Business BASIC 86
Reference Manual

April, 1987
006262-001 M6262A

- MABIBasicFour:

Page Status
Table of Contents

Preface
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Index

P OWOo Jo Ul W

QOFMEOQW R~ O

PAGE STATUS

iii/iv
v through x
xi/xii

1-1

I o | 1 01
L e = S S R

P QHMEHOQE P RRER OOJI00 D WN

[
Y N S

through
through
through
through
through
through
through
through
through

through
through
through
through
through
through
through
through

4-116
5-42
6-22
7-16
8-18
9-28

-1 through 10-34
1 through 11-38

A-10
B-50

iii/iv

Effective Date

April,
April,
April,
April,
April,
April,
April,
April,
April,
April,
April,
April,
April,
April,
April,
April,
April,
April,
April,
April,
April,

1987
1987
1987
1987
1987
1987
1987
1987
1987
1987
1987
1987
1987
1987
1987
1987
1987
1987
1987
1987
1987

M6262A

TABLE OF CONTENTS

Page
SECTION 1 INTRODUCTION
L@ D Vs T 1-1
ST @@ €T 1-1
Compatibility vttt ittt et e e e e e e e 1-1
Contents it e e e e e e e 1-2
ConNVEeNtIONS ittt ittt ittt ettt ettt et ettt e e e e e 1-3
1S % 1110 Yo 0 = O 1-3
Parameter Abbreviationsc..iiiiiiiiiiitnnenenn. 1-4
Input Terminators .. ii ittt ittt ettt eeeeeeennns 1-6
SECTION 2 FEATURES OF BUSINESS BASIC 86
(O S v O 2-1
Operating MOAES v v ittt ittt ittt eeeeeeeeeneeesennas 2-1
Console Mode ...ttt ittt ittt ettt e e, 2-1
Program MoOde .. i ittt ittt et ettt e 2-1
Operating SYSTEM ACCESS v vttt ittt e e eennneneennns 2-2
INPUL/OULPUL DEVICES vttt ittt ettt et ettt ettt eeeeeeeeeen 2-2
I/0 DireChives .t ittt ittt e et et e ettt 2-2
Public ProgrammMiINg .. v e et e eenneeeennneeesenneessennns 2-4
Input BUfferingttt ittt tteeeeeeeneeeeeennns 2-4
Retain BuUufferingttt iiine it teeeeeeeenneeeennns 2-5
Control BrancChingttt ettt eeeeeenneeneens 2-5
SECTION 3 LANGUAGE FORMAT
L7 o v 3-1
Statement Formatttt ittt ittt eeeeeeeeeeenenan 3-1
Statement NUMDEISttt ittt ettt tieeeeeennn 3-1
DireChives ittt e 3-2
Parame L er S v ittt e e e e e e 3-2
Compound Statementsttt neteeeeeeennnnnns 3-2
Variables, Constants and Expressions 3-3
NUMD e S . vt ettt ettt ettt ettt et 3-3
Variable NamesS v vttt ittt iinnnnnennnnnneneeeens 3-4
Field Variables.ttt ittt ee it teeeeeeeneenn 3-4
Simple Numeric Variables.......iiiiiiieienneeenns 3-4
Subscripted Numeric Variables (DIM)covvee... 3-4
Arithmetic EXpPressionsS.....c.eee ettt eeeennneeenns 3-5
String Constants. .ttt ittt teeneeeenneeeeens 3-6
String VariablesS. ...ttt ittt ettt ieeeeenns 3-6
Subscripted String Variables (DIM) «.o.veieenennnn. 3-6
String ExXpPresSSionS . i ettt ittt teeneeeeenneeeens 3-7
String Comparison. vttt ittt ettt eennneeeens 3-7
Logical EXPressSionS . .u. .o e et eeeeeeeeneeeeeennns 3-7

v M6262A

TABLE OF CONTENTS (cont'd)

Page
SECTION 3 LANGUAGE FORMAT (cont'd)
Output Data Formattingttt tennneeennns 3-8
Positioning Data Display .« eee et eeteneeeeeeneeneneean 3-9
NUmeric Edifing v ii ittt ine et eeeeeeeeneeensennns 3-10
Non-Formatted Printing of Numeric Values 3-12
SECTION 4 DIRECTIVES
SECTION 5 FUNCTIONS
SECTION 6 SYSTEM VARIABLES
SECTION 7 INPUT /OUTPUT OPTIONS
OV BTV W ittt it et ettt ettt e eeeeeenneeeeseeneeeeennnns 7-1
SECTION 8 MNEMONICS
L@ T s T 8-1
Mnemonic Formatttt iii ittt eeeneeeennns 8-1
VEU Definition ...ttt ittt ettt et teeeeeeeneeeenns 8-2
Mnemonics DescCriptions ...ttt ittt tteneeeenneenns 8-3
Terminal Control ...ttt ittt ettt eeeeeeeennness 8-5
Printer Controlttt itte it teeeeeeennneneens 8-10
(0 T O o ¥ i ko 30 8-15
SECTION 9 ERROR PROCESSING
I8 0wl ot Y L6 K wil A) o O 9-1
Non-catastrophiC Errors ...ttt n et eeenneeeennns 9-1
Error ProOCEeSSINg . iv ittt ittt ittt teeeeesennneeeens 9-1
CatastropPhicC ErrOrS v ittt ittt tteeeeeeneeeeeenneeens 9-2
Error COQBS ittt ittt ittt ettt et eneeeesoeeeeesennnas 9-2
SECTION 10 BOSS/IX SPECIFIC INSTRUCTIONS
L@ D s T O 10-1
Command Line OpLiONS v it ittt ittt eeeeeeneeeeenneessennns 10-1
(@ e e o 10-1
Command STrINg ittt it ettt teeeeeeneeeeeenneeens 10-2
N 101 o0 R 10-3
INStErUCEIONS ittt ittt e et et e et ettt e et e e 10-4

M6262A vi

SECTION 11

APPENDIX A

APPENDIX B

TABLE OF CONTENTS (cont'd)

Page
BOSS/VS SPECIFIC INSTRUCTIONS
L@ S v O 1-1
MAGNET and NS SUDIOULINES vt ii i ii ittt ittt eeeenennenns 11-1
FEATURES OF THE BUSINESS BASIC PROGRAMMING
ENVIRONMENT
L0 S v A-1
Ghost Tasks ittt i e it e ettt i e e e A-1
Restrictions on Ghost ProgramsSoeeeeeeeeneeeeenn A-1
Communication With a Ghost Task A-2
Public Programming oot eeeeeeeeeeeeeeeeeeeeeeneeean A-3
Restrictions on Public Programmingeeeeeee.. A-4
Input BUfferingttt ittt ettt et eeeeenenanan A-5
Clearing the Input Buffer0iiiiiiiiiinnnnn. A-5
ESCape ProOCESSINg vttt ittt it eeeeeeeneneeeennneeeens A-5
TBL= PrOCESSINGg vttt ittt tteeeeeeneeeeeenneeeeenneeens A-5
Error PrOCEeSSINg . iv it iii it ettt eneeeeeenenensens A-6
Field ProteChion ...ttt ittt ittt et eeeeeeeeenenan A-8
MULTI-KEYED FILES
INtrodUCTion v v ittt et B-1
Applications for Multi-Keyed Filesc.ciivvnn B-3
Existing Applications That Use Sets of Files B-3
Existing Applications That Use the Sort Utility B-3
Enhancement of Existing Applications B-4
Rewriting O0ld Or Writing New Applications B-4
The Benefits of Using Multi-Keyed Filesc0... B-4
Reduced File MaintenanCeu.iii it ineeeeeenenenan B-4
Improved Data Integrity ... v iii ittt eenneeeennns B-4
Improved PerformancCettt ittt teneeneeneens B-5
Reduced Disk Space Requirementsccieieee.n.. B-5
Reduced Complexity of Applications B-5
The BB86 Syntax for Multi-Keyed Filesccoieieennn.. B-6
Creating a Multi-Keyed File ...t iiinneeeennenns B-6
Format Stringttt ittt ettt eeeeanenns B-6
Field Informationuii ittt B-9
Variable-length Fieldsc.i ittt iinnnneennns B-10
Composite Fields ..t iiii ittt tteneeeeenneens B-11
Fields That Don't Follow Each Other B-14
Gaps In The ReCOrd ...ttt ittt ittt ittt ennennns B-17
Reading Records From a Multi-Keyed Fileccu... B-17
LI = (] € 30 N I B-17
Expanded KEY= Capabilitiesc.iiiiiiiinnenennnnn B-18
Reading Using FIELD ALTIAS ittt ittt et ennneeeennneneens B-19

vii M6262A

APPENDIX B

APPENDIX C

APPENDIX D

M6262A

TABLE OF CONTENTS (cont'd)

Page
MULTI-KEYED FILES (cont'd)
RETAIN and UNPACK ..ttt ittt ittt teneetenneenenneennas B-20
Other Variations On the READ Statement B-21
Writing Records to a Multi-Keyed Fileiiiieunnn.. B-21
Removing Records from a Multi-Keyed File B-24
New Language FeatuUres ...t ii it ittt teneeneenneneenns B-24
The KEY FUNCLIon ...ttt ittt ittt B-25
The FMTINFO FUNCLION it it ittt it ettt e eeeeeeeeaanas B-25
A B-28
S 0 1 B-28
FIELD AL AS ittt it it e i ettt et et et et ateeeeeeeneenas B-28
MISCELLANY vttt et ettt e e e oneeee e eneeee et B-29
File Creation ExXampPles ...ttt iii ittt eenneeeeneeeeeennns B-30
SAMPle PrOgIraAlMsS v v e vt o v e e eeeoneenneseesansseseenseeneesnesans B-32
Printing a Multi-Keyed Filetiiiiiiiiiennn B-36
Updating a Multi-Keyed Fileiiiiiiinennennnnn B-38
Loading Data into a Multi-Keyed File B-39
Converting Existing Applicationsciiiiiiininnnn. B-39
Select an Appropriate Programc.e.eeeeeeeneeenns B-39
Conversion Approachesttt ennenns B-40
Selection 0f Keysel s vttt ittt teneneeennns B-40
Selecting NOKEY Fields i iiiiietttneeeeeeneeeeennnns B-41
Finding Records By NOKEY FieldScuoieiieennneennn. B-41
Suggestions for CoONversSion ei et ineeneeneenns B-41
Data Layout DiagramsS. ... e ettt eeeeenneeeeenneenns B-41
Field Separator Characters..........uiiiiiiiiinnn.. B-42
1161 o 8 = O B-42
The WriteThru File Attribute on BOSS/VS............ B-44
Definition of Keysets for Conversion............... B-44
Recovery of Multi-Keyed Files on BOSS/VSc.vv... B-44
Concurrency and Integrityeiiiii i eeennenns B-44
Tools Availablettt it ettt et eaeeaens B-45
File RECOVETY SEQUENCE « vt vttt teeeeeeneneeeenneeneens B-45
Recovering Multi-Keyed Files on BOSS/IX .. vvivueennnnnn B-47
Template File ..ottt ittt ettt ettt eeneeeeeeenens B-47
Disk Space RequirementsSeeiittennneneennnneeens B-47
User Interface ...ttt ettt ittt e e B-48
Single User MOAe it i ittt ttee et eeneeeeenneeeeennnns B-48
Repairing a Multi-Keyed File ...t B-49
VARIABLE TABLES FOR BOSS/IX
ASCII CHARACTER CHARTS
Character Codes ...t ittt ittt iiie ettt D-1
Explanation o0f Codes ...ttt iii ittt eeeeeeeeeneeennns D-2

viii

APPENDIX E

APPENDIX F

APPENDIX G

INDEX

TABLE OF CONTENTS (cont'd)

KEYWORD LIST

BUSINESS BASIC FEATURE SUMMARY

OV VI W ittt it ettt ettt et e eeeeeeeenes
Business BASIC Feature Summary

BUSINESS BASIC 86 QUICK REFERENCE

ix

Page

M6262A

H
V]
o
=
(0]

|
PO WNDNRERPRDNDEDNRE

| P oo
|
NP

OOOWrRRRFROOHMTOOOO U NN
|

I
N

M6262A

LIST OF TABLES

Page
Restricted Use DirecCtives .. .iii ittt ttneeeeeneeneenens 2-1
Input/Output Directives and Applicable Files/Devices 2-3
Call/Enter DirecCtives ..ttt ittt eeeeeeeeeeeeeeeenn 4-5
Table Statement Tablettt ittt eeeeeneeneenns 4-108
Character Code CONVEeTrSiOoNS v ittt ittt ettt teeeeeeeennns 5-12
Terminator Key Control ValUues ... iiitttneeeeeeneeeeeennns 6-3
SMC ID COQB S vttt ittt et et ettt et et et et e eeeeeeeeeeeaeanans 6-5
Device TyPe COES v it ittt ittt ittt eettteeeeeenneeneenneenns 6-6
Device Status CoOdes v i it ittt ittt et ettt teeeeeeeeeeneenens 6-7
CB Variable Format . ..ottt ittt ettt et eeeeeeeeeneaeans 6-15
Alphabetical Listing of Mnemonicsccciiiiiieennnn. 8-3
FID FOrmMaAt vttt ittt ittt ettt ettt et eaeeneeaeeeeeaeeeneenees 10-17
PUB(0) FOImMaAt vt ittt ittt et ettt ettt eeeeeeeeeeeeeeneenaneas 10-28
L T o T = O 1-17
IS0-646 Standard CharactersS ...ttt ittt et et et eeeeeenn B-7
BOSS/IX Low-order ASCII Character CodeSuuvveeeennnnnnn D-1
BOSS/VS High-order ASCII Character Codesueeieeneen.. D-2

PREFACE

The Business BASIC 86 Reference Manual describes the MAI Basic Four Business
BASIC 86 Language used on BOSS/VS and BOSS/IX systems. The information in-
cludes the new features provided in Business BASIC 86 and also additional fea-
tures that take advantage of the special features of the BOSS/VS and BOSS/IX
operating systems.

The major topics covered in this user guide are:

Section 1 Introduction

Section 2 Features of Business BASIC 86
Section 3 Language Format

Section 4 Directives

Section 5 Functions

Section 6 System Variables

Section 7 Input/Output Options

Section 8 Mnemonics

Section 9 Error Processing

Section 10 BOSS/IX Specific Instructions
Section 11 BOSS/VS Specific Instructions
Appendix A Features of the Business BASIC Programming Environment
Appendix B Multi-Keyed Files

Appendix C Variable Tables for BOSS/IX
Appendix D ASCII Character Charts

Appendix E Keyword List

Appendix F Business BASIC Feature Summary
Appendix G Business BASIC 86 Quick Reference

WARNING

This equipment generates, uses, and can radiate radio frequency
energy and if not installed and used in accordance with the in-
structons manual, may cause interference to radio communications,
as temporarily permitted by regulation. It has not been tested
for compliance with the limits for Class A Computing Devices pur-
suant to Subpart J of Part 15 of FCC Rules, which are designed to
provide reasonable protection against such interference. Opera-
tion of this equipment in a residential area is likely to cause
interference, in which case the User at his own expense will be
required to take whatever measures that may be required to correct
the interference.

xi/xii M6262A

OVERVIEW

SCOPE

COMPATIBILITY

SECTION 1 - INTRODUCTION

This reference manual describes MAI Basic Four's Business
BASIC 86 (BB86) programming language. BB86 is a new ver-
sion of Business BASIC introduced with the BOSS/VS Level

8.6 and BOSS/IX Level 7.3 operating systems.

BB86 provides a new level of program compatibility between
BOSS/IX and BOSS/VS systems by providing and documenting a
language core that will behave compatibly between the two
operating systems. In this way, programs that are re-
stricted to use of the BB86 core syntax will be directly
portable between systems running BOSS/IX (levels 7.3 and
higher) and BOSS/VS (levels 8.6 and higher).

While the BB86 standard maintains this core, additional
features are included in the implementation of BB86 on
BOSS/IX and BOSS/VS to take advantage of the special fea-
tures of these operating systems. However, programs using
these additional features may not be portable between
systems without some, possibly manual, conversion.

This reference manual is written as a tool for programmers
in the everyday use of the MAI Basic Four systems. The
explanations in this manual are presented in a condensed
manner. All sections are structured to help the user find
the answers to common questions, such as format or para-—
meter selection, as quickly as possible. Some aspects of
Business BASIC are given expanded discussion in the appen-
dices. The Business BASIC 86 Quick Reference Card,

(M0O018) has been prepared to complement this quick refer-
ence function.

The manual is specifically directed toward users of Basic
Four systems who develop, program and support business ap-—
plications. It is not a tutorial, although a programmer
already knowledgable in some other version of BASIC will
be able to learn Business BASIC from it.

Business BASIC 86 is introduced for the first time with
BOSS/VS Level 8.6 and BOSS/IX Level 7.3. BB86 is a stand-
ard, defining a set of directives, functions, and system
variables as a common core to be supported and compatible
on future releases of BOSS/VS and BOSS/IX Business BASIC.
The core is based on compatibilities that already existed
between BOSS/IX and BOSS/VS. The standard is a superset
of that commonality. As a result of the evolution of
Business BASIC, some compatibility with Level 3/4 Business
BASIC is also maintained.

1-1 M6262A

CONTENTS

M6262A

Accordingly, new programs written using only the syntax of
the BB86 core are guaranteed to be compatible between
systems running BOSS/VS Level 8.6 or higher and BOSS/IX
Level 7.3 or higher.

The implementations of BB86 on BOSS/VS and BOSS/IX, how-
ever, are themselves supersets of the BB86 standards.
These implementations include additional directives, func-
tions and system variables that take advantage of facili-
ties provided by the BOSS/VS and BOSS/IX operating
systems. These additions continue to provide upward com-
patibility for programs written under BOSS/VS levels 8.5
and lower, and for programs written under BOSS/IX levels
7.2 and lower. However, programs written using these ad-
ditional facilities may not be compatible across operating
systems. For instance, a program written using special
BOSS/IX features will probably require conversion to run
on BOSS/VS systems.

The information in this manual is presented in the follow-—
ing sequence:

o Section 1: Introduction - provides an overview of the
purpose of the manual. Defines the intended audience,
briefly describes the contents, and defines style con-
ventions.

o Section 2: Features of Business BASIC - describes var-—

iables, constants, expressions, logical operations and
output data formatting.

o Section 3: Statement Formats - explains each component
of a statement and defined parameters, common parameter
abbreviations, and input/output (I/0) options. In-
cluded also here are symbols, compound statements and
input terminators.

o Section 4: Directives - lists and describes each
directive in alphabetical order.

o Section 5: Functions - lists and describes each
directive in alphabetical order.

o Section 6: System Variables - lists and describes each
system variable in alphabetical order.

o Section 7: Input/Output Options - lists and describes
each input/output option in alphabetical order.

o Section 8: Mnemonics - lists and describes each
mnemonic and its devices by category.

CONVENTIONS

Symbols

Section 9: Error Processing - Lists each error, de-
scribes what the error number and message mean, and
outlines the procedures to follow for correction.

Section 10: BOSS/IX Specific Instructions
Section 11: BOSS/VS Specific Instructions

Appendix A describes features of the Business BASIC
programming environment.

Appendix B introduces the use of Multi-keyed files.

Appendix C describes the variable tables for the
BOSS/IX implementation of BASIC, provided for use with
the CPL and LST functions.

Appendix D contains tables of ASCII character codes;
included are a high-bit-on table for BOSS/VS and a
high-bit-off table for BOSS/IX.

Appendix E is an alphabetical listing of the keywords
available in Business BASIC 86.

Appendix F is an alphabetical summary of the features
available in Business BASIC 86.

Appendix G is a quick reference summary of the system
variables, I/0 options, operators, functions, error
messages, mnemonics, and directives available in Busi-—
ness BASIC 86. This information is also included in
the Business BASIC Quick Reference Card, M0018.

This manual uses certain conventions for indicating lan-
guage syntax. Symbols used are defined as follows.

Symbols used in the formats of language elements include
the following:

{}

Parameters enclosed in braces are optional. If
these parameters are not entered, the system either
does not use them or sets default values for them.
All parameters not appearing in braces are required
by the system. Do not enter the braces themselves,
only what they contain.

Parameters enclosed in parentheses are required.

Parentheses are to be entered with the parameters
they surround.

1-3 M6262A

Parameter
Abbreviations

add_alloc

arg-list

[] Brackets are to be entered with the parameters that
appear within them. Brackets are vised only in the
EDIT statement.

" Parameters enclosed in quotation marks are required.
Quotation marks are to be entered with the para-
meters they surround.

A series of parameters separated by the vertical bar
are alternatives. Generally, at most one of the
alternatives is to be used.

$ String.

$S These can be used in place of "" for null. They
also identify hexadecimal characters.

NOTE

All the above parameters are optional when en-
closed in {} braces. For example:

{"file-ID"}
{(fileno)}

Many directives use the same parameters, which appear in
abbreviated form in the text. These parameters are
defined as follows:

additional number of records to be allocated to a growing
file when its initial allocation is consumed. As space is
needed the file will grow in increments determined by

add alloc until it reaches its defined maximum number of
records.

a list of one or more variables, constants or expressions.

current working directory

M6262A

first directory to be searched if a full path name is not
part of the file name. This is the first directory in the
prefix list, if the prefix list is specified. If the pre-
fix list is not changed in BASIC, the user's prefix list
consists of his working directory plus alternate direc-—
tories upon entering BASIC. The current working directory
is alternately referred to as the primary prefix.

directory

diskno

file-ID/dev-1ID

fileno

init-alloc

int-expr

keysz

log-expr

num-expr

prefix-1list

prog—-ID

recno

a string expression that specifies a directory name.

can be either a number from O to 7 or 255. This parameter
is ignored by both BOSS/IX and BOSS/VS BASIC.

a string expression that identifies a file or a device.
The string's content is system dependent. Refer to the
BOSS/VS User Guide, M5098F, and the BOSS/IX User
Reference, M6210 for more detailed information.

the channel (logical unit) number that identifies a file
or device, such as data files, terminals and printers.
Assigned numbers may be from 0 to 63 only; each must be an
"int-expr" (see below).

the number of records initially allocated to a file when
the file is defined.

a number, numeric variable or arithmetic expression with
an integer value.

the size of a key in a direct or sort file; for direct
files: minimum=1, maximum=56; for MULTI files: minimum=1,
maximum=80.

an expression containing a logical relation (>, =, <, >=,
or <=) or connectives (AND, OR).

a numeric variable or constant or an arithmetic expression
with a real value.

the list of directories to be searched when looking for a
file for which the name, but not the full path name, is
given. If the file is not found in one of the directories
specified in the prefix list, the search terminates. When
the user first enters BASIC, the prefix list is set to his
current working directory plus alternate directories.

the name of a program.

the number of records in a file.

1-5 M6262A

reesz the size of each record of a file, in bytes.

secno denotes the sector number on which a file is to be defined
for the Business BASIC Level 3/4 system. It is retained
here for compatibility only. This parameter is ignored by
both BOSS/IX and BOSS/VS BASIC.

stno statement number.

str-expr a string variable or substring, such as A$(5,3); a
literal; or an expression containing a combination of them
(with a "+" for concatenation). String literals are en-
closed in quotation marks ("). Hexadecimal strings are

enclosed in dollar signs ($S).

var—-list a list of variables separated by commas (",").

Input Terminators Input terminators are keys which notify the system that
input has ended. The input terminator most commonly used
is the CR character produced by pressing the <RETURN> key.
Other field terminators are Control Bars, sometimes called
Motor Bars, <CTL-I>, <CTL-II>, <CTL-III> and <CTL-IV>, the
LF (line feed) and NULL. All operations in this manual
are to be entered using the <RETURN> key. More informa-
tion on input terminators can be found in the description
of the CTL function in Section 5.

1-6 M6262A

OVERVIEW

OPERATING MODES

Console Mode

Program Mode

SECTION 2 - FEATURES OF BUSINESS BASIC

This section introduces many of the features of Business
BASIC 86. A few of these features are new to BB86; most
have been established in earlier versions of Business
BASIC.

The Business BASIC environment has two operating modes:
console mode and program mode.

Most directives are permitted in both console and program
mode, but some are restricted. Table 2-1 shows the re-
strictions.

In console mode, statements are entered without statement
numbers at the BASIC prompt, > or]. Statements entered
in console mode are executed immediately, upon pressing
the <RETURN> or <ENTER> key. These statements are not
added to any program , and are not stored in user program
memory.

In program mode, statements are entered with statement
numbers. Each statement is checked for syntactical cor-
rectness and is then added to the program currently in

user memory. It 1s not executed until the program is run.

TABLE 2-1. Restricted Use Directives

DIRECTIVE PROGRAM MODE CONSOLE MODE
DEF FN X

EDIT X
EXECUTE X

EXIT X X*
EXITTO X

EXTEND X
GOSUB X

IOLIST X

LOAD X
NO EXTEND X
RETURN X

FOR/NEXT X X**
RETRY X

RUN w/0 arguments X

* Can be both if you type in a called mode.

*x BOSS/VS BASIC allows FOR in console mode if its NEXT
is in the same line.

86

2-1 M6262A

OPERATING SYSTEM
ACCESS

INPUT/OUTPUT
DEVICES

I/0 Directives

M6262A

Once a program has been created in program mode, it can be
executed from console mode by use of the START or RUN
directive. In addition to the optional execution of a
program, START is used in BOSS/IX to assign a specified
amount of memory to the user area to run the program; RUN
is used when enough memory already exists in the user
area.

Since BB86 operates under the control of an independent
operating system, either BOSS/VS or BOSS/IX, facilities
are provided for accessing special functions provided by
the operating system without leaving the BASIC environ-
ment.

An operating system command can be preceded by an exclama-

tion point (1). 1In this case the command string is not
placed in quotation marks and is not preceded by the word,
"EXECUTE." The exclamation point is described as a spe-

cial directive for each system in sections 10 and 11. An
alternate form is the SYSTEM directive, which uses a
string expression. In either case the operating system
command format is system dependent.

Input and Output (I/0) devices include terminals,
printers, files, and other peripherals with which a pro-
gram can communicate.

To use an I/0 device, you must first prepare the device by

using the OPEN directive. In the directive you assign the
device a file number (also called a channel or logical
unit number). The program uses this number for all com-—

munication with the device.

Up to 64 channels can be opened simultaneously. The user
terminal is automatically assigned a file number of zero
(0) and is always opened to that channel, leaving 63 chan-

nels available for accessing files and other devices. 1I/0
statements involving the user terminal are not required to
specify its file number unless I/0 options are used.

BB86 uses error codes to indicate problems resulting from
improper device access (refer to section 9 for a complete
explanation of the error codes.)

Table 2-2 lists the input and output directives available
to the programmer, and the files and/or devices which can
be specified for each.

TABLE 2-2.

DIRECTIVE

CLOSE

EXTRACT

F'IND

INPUT

LIST

LOCK

MERGE

OPEN

OPEN INPUT

PACK

PRINT

READ

REMOVE

RETAIN

UNLOCK

UNPACK

WRITE

Input/Output Directives and Applicable Files/Devices

Serial/
Indexed

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

NO

YES

YES

YES

YES

Direct/ Multi-
Keyed

Sort

YES

YES

YES

YES

NO

YES

NO

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

Certain tape devices
for BASIC programs.

(e.g.,

YES

YES

YES

YES

NO

YES

NO

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

cartridge streamer)

Terminal

YES

NO

NO

YES

YES

NO

YES

YES

YES

YES

YES

YES

NO

NO

NO

YES

YES

Printer

YES

NO

NO

NO

YES

NO

NO

YES

NO

YES

YES

NO

NO

NO

NO

NO

YES

Tape supports these directives in RECORD mode only

RECORD,

but not READ);

Tape*

YES

NO
NO
NO
YES

YES

(e.g.,

otherwise an ERROR 13 is generated.

READ

are not supported

M6262A

PUBLIC PROGRAMMING

INPUT BUFFERING

M6262A

Public Programming allows libraries of commonly used pro-
grams to be accessed by many different applications. This
helps build large, structured systems of application pro-
grams.

For example, if you were building a system of 37 applica-

tion programs and each program verified a particular item

of data the same way, placing the verification code (which
we assume to be 1000 bytes in length) into a single Public
Program offers the following advantages:

1. The overall size of the application system decreases
by roughly 36,000 bytes.

2. You modify only one body of code to change the verifi-
cation, rather than 37 different versions.

3. It helps in documenting how the system functions.

Public Programs are executed by the CALL directive. Nor-

mally, when a CALL is executed, BB86 issues commands to
the operating system to find the program on the disk and
load it into memory.

On BOSS/IX systems, performance is improved if frequently
used public programs are placed in a reserved memory area
by the ADDR directive. When a program is ADDR'ed, it is
loaded into memory and remains there until DROP'ed . The
DROP directive deletes the program address and removes it
from memory. (BOSS/VS systems automatically do the equi-
valent of ADDR'ing and DROP'ing.)

Other directives that are used within Public Programs are
ENTER and EXIT. ENTER is used for passing arguments be-—
tween the CALLing program and the CALL'ed program . EXIT
returns control to the CALL'ing program

The following directives cannot be used in a Public Pro-
gram and still be BB86 compatible. An attempt to use
these on the BOSS/IX results in an error 38.

EXECUTE MERGE ESCAPE
DELETE SAVE
LIST RUN

During the execution of a Business BASIC program, input
buffering lets you enter data without waiting for a
prompt. You can enter required responses in the sequence
the data is requested. However, the characters are not
echoed until the processor executes the statement request-—
ing the data.

RETAIN BUFFERING

CONTROL BRANCHING

In BASIC, any error that returns the terminal to Console
Mode also clears the input buffer. In Program Mode, only
errors 5, 9, and 34 clear the input buffer when errors are
trapped using ERR= or SETERR.

Buffer overflow occurs when too many characters are put
into the input buffer. The buffer overflow is handled by
the operating system, which issues an error 34.

At critical prompt points in a program, it may be de-
sirable not to use unprocessed data in the buffer. The
mnemonic 'CI' clears the input buffer, assuring that the
prompt is displayed before input is accepted. For

example:
1240 INPUT 'CI',"PLEASE REENTER DATA: ",AS

Subsequent inputs are then buffered as they were prior to
execution of the mnemonic.

When operator verification of system output is required,
you should use the 'CI' menmonic on the input statement.
This forces the operator to wait for the system prompt.

If the <ESCAPE> is pressed during the processing of the
input buffer, that portion of the input field moved to the
program area is lost. When you resume execution with RUN,
processing starts where it left off, even within a state-
ment interrupted by ESCAPE. If the program has a SETESC
in effect, the buffer is cleared before executing the
SETESC routine.

BB86 introduces RETAIN buffering, a new I/0 option, parti-
cularly as an aid in handling multi-keyed files. A retain
buffer is kept for each channel opened to a a file or de-
vice The buffer holds an entire record, which can then

be moiified by the program used to load values into vari-
ables and written. Two additional new directives, PACK
and UNPACK, have been introduced to manage the retain
buffer.

Examples of how to use the retain buffer with multi-keyed
files are given in Appendix F. The buffer is also avail-
able for use with other files and devices. Refer to the
descriptions of the PRINT, WRITE, READ, and INPUT direc-
tives for additional information.

Branching occurs when program control is transferred to a
statement other than the next statement in sequence. Pro-
gram control may be transferred by use of certain direc-
tives and I/O options.

2-5 M6262A

Directives that cause program control to transfer to an-—
other statement when certain conditions are met include
the following:

GOTO
GOSUB
EXIT
EXITTO
NEXT
ON/GOSUB
ON/GOTO
RETRY
RETURN
SETCTL
SETESC
SETERR

The I/0 options that transfer program control include:
DOM=
END=

ERR=

See the descriptions of these directives and options in
Chapters 4 and 6, respectively.

M6262A 2-6

OVERVIEW

STATEMENT FORMAT

Statement Numbers

SECTION 3 - LANGUAGE FORMAT

This section describes the syntactical elements that con-
tribute to a BASIC statement.

Every BASIC statement contains two elements:
and a list of parameters.
gram mode begin with a statement number.

In addition,

a directive
statements in Pro-—
BASIC statements

are given as in the following example:

500 PRINT

500

Statement
Number:

A number that
uniquely
identifies
the statement
within the
program

"EXPRESSION"

PRINT

Directive:

The operation
to be
performed

'EXPRESSION"

Parameter (s)

Required and/or
optional values

used by the directive
to further specify the
action

Each element is separated from the preceding and following

elements by a space.

they are separated by commas.

When several parameters are entered,

A BASIC program may contain more than one BASIC directive.

A simple statement contains only one directive.
pound statement contains several directives,
rated by semicolon

A com-—
each sepa-

(;). The statement numbers specify
the order in which the statements will be performed.

Each statement in a Business BASIC program begins with a
Statement numbers can be any integer

statement number.
between 1 and 16000,

inclusive.

Statement numbers are normally assigned according to a
step sequence great enough to allow insertion of addi-

tional statements,
entered in any order;

if any are needed.

Statements may be

they are then automatically sorted

into ascending order by statement number.

If a statement is entered without a statement number, it

is executed immediately

come part of the program.

(in console mode)

and does not be-

If a new statement is entered that uses an existing num-

ber,

it will replace the existing statement.

M6262A

Directives

Parameters

Compound
Statements

M6262A

If the number of an existing statement is entered alone,
the existing line with that statement number is deleted.
If no statement already exists with that statement number,
an ERROR 21 results.

When entering statement numbers, or any other numeric
entry, leading zeros need not be entered.

Because it instructs the system to perform specific opera-
tions, such as PRINT or READ, the directive is the key
element of the BASIC statement. Most directives can be
executed in both Console and program modes. Exceptions
are noted in the description of the directive.

LET and THEN are optional parts of the LET and IF/THEN
directives. If they are omitted, the BOSS/IX compiler/
lister supplies them before listing the program

Parameters condition the exact operation of the directive.
Parameters specify such items as the values on which the
directive is to operate (such as an expression to PRINT),
how the directive is to handle its wvalues (should it ac-
cess a file by index or by key) and how the directive is
to handle special conditions (such as errors).

The required and optional parameters vary for each direc-
tive. Some directives do not require any parameters.
Parameters are described in the discussion of each direc-—
tive.

Parameters can generally be specified by constants, vari-
ables, functions, arithmetic operations or string con-
catenations, allowing flexibility within a program

Statements can be compounded on a single numbered
statement line. A semicolon is used between simple state-
ments to form compound statements. For example:

1000 LET X=20; LET Z=50; GOSUB 2000

The following rules apply to compound statements:

1. Both console and program mode statements may be com-
pound.

2. DEF, TABLE and IOLIST cannot be part of a compound
statement.

3. REM statement can appear only as the last part of a
compound statement. A remark cannot be followed by a
continuation; otherwise the continuation is treated as
part of the remark.

Variables,
Constants and
Expressions

Numbers

4. The following commands, because they transfer control,
cannot be immediately followed by any command other
than REM or ELSE:

END GOTO RETRY STOP
EXECUTE ON/GOTO RETURN

EXIT QUIT RUN

EXITTO RELEASE START

5. NEXT might return to the next statement in a compound
sequence, either after the FOR or after the NEXT.

6. RETURN causes a return to the next statement in the
compound sequence following a GOSUB routine or a SETCTL
routine.

7. RETRY re-executes the appropriate statement within a

compound sequence after an error has occurred.

Business BASIC provides for the use of numbers, strings,

variables and expressions composed of these . A new type
of variable, the field variable, 1is introduced in BB86 for
working with multi-keyed files. These are discussed in

the following paragraphs.

A number is composed of digits and can be preceded by a
sign and/or contain a decimal point. Because numbers can
get extremely large, Business BASIC also provided another
method of display, in which a number can optionally be
modified by floating point notation (.1E-10). The number
preceding the E is multiplied by 10 to the power following
the E.

The following are both valid ways to represent the same

number:
3 3.000
003 .3E1

The (floating point) numbers can range in magnitude from
-.99999999999999E63 (14 nines) through -0.1-E63 (largest
number less than zero) and from 0.1-E63 (smallest number
greater than zero) through 0.99999999999999E63 (also 14
nines); zero is included. Numbers outside this range re-
sult in an ERROR 40. The system retains up to 14 signi-
ficant digits.

If a statement syntax calls for an integer (whole number)

value, and the number used is not an integer or is outside
the allowable range, an ERROR 41 results.

3-3 M6262A

Variable Names

Field Variables

Simple Numeric
Variables

Subscripted
Numeric
Variables (DIM)

M6262A

BB86 allows variable names of up to eight characters, plus

"$" for string variables or "#" for field variables. The
first character must be a letter and may be followed by up
to seven letters and digits. Upper- and lower-case have

no significance.

User defined variable names cannot be keywords, but they
can contain keywords. BASIC keywords are all commands,
functions, system variables, and:

ALL, ELSE, EXCEPT, FI, FN, RECORD, STEP, THEN, TO

The only special restriction is that a user defined vari-
able cannot begin with FN, which causes the system to ex-
pect a function definition.

A user defined function can be a keyword, since the FN
prefix eliminates any ambiguity.

A new category of variables is introduced in EB86 for
handling fields in Multi-Keyed files. A field variable

name consists of a letter, followed by up to seven letters
or digits, followed by a pound sign (#). The pound sign
may not be separated from the rest of the name. Accept-
able variable names are: SALARY#, F#, HO#.

The name without the pound sign may not be a BASIC key-
word, but it may contain a keyword.

The rules for field variable names are exactly the same as
for field names (refer to the MULTI directive), and are
the same as for string and numeric variables except for
the ending #.

Field variables are assigned values only by the FIELD
ALIAS directive, and are assigned on a channel basis.
Refer to the FIELD ALIAS directive and also to Appendix B
and Appendix F for additional information.

A simple numeric variable is denoted by between 1 and 8
letters or digits; the first character must be a letter.
ACCOUNT2 and EZ4ME are examples of names for simple num-
eric variables. A simple numeric variable can contain any
valid number. ALL references to previously unassigned
numeric variables yield a value of 0.

A subscripted numeric variable denotes an element of an
array. (An array is a systematic grouping or arrange-—
ment.)

Arrays must be defined by use of a DIM statement before
they are referenced (see DIM directive, section 4); other-
wise, Business BASIC returns an error 42, nonexistent sub-

script.
Arithmetic Business BASIC uses common mathematical symbols, numeric
Expressions variables and numeric constants to form arithmetic expres-—
sions. An arithmetic expression can be used wherever a
numeric variable is valid, except to the left of an equal
(=) sign. A string variable cannot be used in an arith-

metic expression unless converted to numeric format (see
NUM, DEC and ASC functions in section 5).

Arithmetic expressions are evaluated according to a
predefined priority:

Order Symbol Meaning BASIC Math
272 22
1 Exponentiation
2 * and / Multiply & Divide 2*2, 2/2 2x2, 2/2
3 + and - Add and Subtract 2+2, 2-2 2+2, 2-2
(also negation) -2 -2
If two symbols have the same order of precedence, opera-—

tions are performed left to right.

The order in which operations are performed can be changed

by use of parentheses. If a set of parentheses appears
within another set of parentheses, the innermost set is
evaluated first and evaluation continues outward. For
example:
Math BASIC Result
10+20 10420 30
10+20x10 10+20*10 210
(10+20)x10 (10+20) *10 300
10+20 (10420) /10 3
10
22x3 27°2*3 12
2+6 x 243 (24+6)/4*(2+3) /5 2
4 5
—(22) —2A~D -4

Note that constants can be replaced by variables.

3-5 M6262A

String Constants A string constant is a string of characters, and can be
any length up to 2K bytes long.

Character strings can be represented in two ways in Busi-
ness BASIC: either as the literal characters or by their
hexadecimal code representation.

With one exception, any character that can be typed at the
keyboard can be entered as a literal character. The
characters are typed in as they should appear, and the
entire string is enclosed in quotation marks (e.g.,
"string"). The exception is the double quotation mark;
use two adjacent ones to represent a single one in a
literal string:

0100 AS$="""R.P. McMurphy's the name,"" he said with a
grin."

Characters can also be entered by their two-digit hexadec-—
imal ASCII code. Characters that cannot be generated from
the keyboard must be represented in this way. Each
character is represented by two hexadecimal digits (0 - 9,
A - F). The entire hexadecimal string is enclosed in dol-
lar signs (e.g., $737472696E67S) . (Refer to Appendix D
for hexadecimal character values.) If an odd number of
characters are specified, the string is padded on the
right with a zero (i.e., 1 is treated as $1093).

String Variables A string variable is identified by one to eight letters or
digits followed by a dollar sign ($); the first character
must be a letter. Examples of valid string variable names
are: AS$, SEARCHS, and USER7S$. There is no limit (other
than computer memory size) to the number of characters
that can be stored in a string variable. For example:

AS = "LOTSOFCHARACTERS"
Subscripted The Dim statement is used to assign a length and, option-
String ally, a filler character to a string variable. The first
Variables (DIM) parameter is the length of the string, and the second par-
ameter is the fill character. TIf the second parameter is

omitted, then the fill character is a blank.
For example:

0300 DIM BS (5)
BS is 5 characters in length.

0300 DIM BS$(5,"*")

BS$ is five characters in length and is filled with aster-
isks (Fx*xEx) |

M6262A 3-6

String
Expressions

String Comparison

Logical
Expressions

Business BASIC uses the plus sign (+) with string
variables and string constants to form string expressions.
The plus sign represents concatenation. For example:

00010 LET AS="HEAD"
00020 LET BS="ACHES"
00030 LET CS$S =AS$+BS
00040 PRINT CS$

>RUN
HEADACHES

The amount of data area overhead required when concatenat-—
ing string expressions varies based upon the strings in-

volved and the existence of the result variable. For ex-
ample, 1if the statement "AS$S=AS+BS" is used, a temporary
storage area is created and the strings in AS$ and BS$ are
placed there. The space reserved for AS$ is then expanded
to hold the result. The contents of the temporary storage
area are copied into A$ and the storage area becomes free.

String expressions can include mnemonics. For example:

00010 SCREENS='cs' + @(30,10) + "Operator Id "o+
00010:@(32,12) + "Password "

can be used to store a login display screen in a BASIC
string variable.

Strings are compared character by character. The charac-
ter values are compared until the value of a character in
one string exceeds the value of a character in the same
position of the second string. The string "RED", for ex-
ample 1s greater than the string "BLUE" because the first
positions evaluated show "R" to be greater than "B".

If two strings are equal for the length of the shortest
string, then the longer string is considered greater in
value. For example:

00100 LET AS$="SOME"
00110 LET BS$="SOMEMORE"

B$ is greater in value. Note that "a" is greater than
"ZZZ" because all lower case letters are greater than
upper case letters.

Logical expressions provide a method of testing the
relationship between two numeric or string expressions.
Conditional branching is commonly determined by the
results of such comparisons.

3-7 M5262A

Logical expressions are used with the IF/THEN/ELSE direc-
tive to specify the conditions for branching. For
example:

00100 IF A=1 AND B=2 or C=3 THEN GOTO 0200

(Refer to the description of the IF directive in section
4.)

Test criteria are established by the following relational

operators:
equal to
< less than
> greater than
<> or X not equal to
<= or =< less than or equal to
>= or => greater than or equal to

Simple, or atomic logical expressions are composed of two
numeric or two string expressions, separated by one of the
above relational operators. For example:

X - 2.35

Y + 5.4 <> 8 * (Z +2.3)

AS <= "A STRING"
Compound conditions can also be specified with the use of
AND or OR:

A=1 AND B=2

X$="HEAD" OR YS$="ACHE"

Logical operations, like arithmetic expressions, are

evaluated according to a priority. If used together,
arithmetic expressions are evaluated before logical opera-—
tions.

Compound logical expressions are evaluated left to right.
AND and OR have the same strength, so neither takes
precedence. Parentheses may be used to change the order
of evaluation.

Using AND or OR, the second conditional expression will
not be evaluated unless it's necessary. For example:

IF A>1 AND X$(A)="B" THEN...

will not evaluate XS$S(A)="B" if A is one or less.
OUTPUT DATA Business BASIC includes expressions for formatting the
FORMATTING output of data. The following paragraphs describe the

syntax for vertical and horizontal positioning of the out-
put display, and for numeric display editing.

M6262A 3-8

Positioning
Data Display

Vertical and horizontal positioning are provided by the
positioning expression within the PRINT, INPUT, READ and
WRITE directives.

Both a vertical and a horizontal position can be specified
for terminal input and output; horizontal position can be
specified for printer output. The positions can be given
by any wvalid numeric expression; non-integer values are
rounded to the nearest integer.

The positioning expression immediately precedes the output
expression, if any, or the input variable. Multiple
positioning expressions can occur in a single statement.

For example:

00020 PRINT (0,ERR=1000)
00030 INPUT (0,ERR=1200)

@(0,5), "Customer Data"
@(10,8),"Customer Name: ",AS
Note: @ (column, row)

Line 20, above, positions the beginning point for the
screen heading. Line 30 positions the beginning of the
description of the data to be input, followed by the input
variable. The input variable can also have its own
positioning expression:

00030 INPUT (0,ERR=1200) @(10,8), "Customer
00030:Name:",@(25),A$

Only the horizontal position is given for the variable
since the desired vertical position is already determined
by the position of the comment. Both vertical and hori-
zontal positions could be given, and the vertical position
can be either the same as, or different from, the preced-
ing position. ©Note: if the row X position is not speci-
fied, the space between the first @ position and the next
@ position is blanked out. 1In the following example, the
space between 0 and 10 is cleared.

PRINT @(0,10),@Q@(10)
The following program shows valid positioning expressions:
0010 LET A$="STAGGER"
0020 PRINT @(5,10),As$,@(20),AS$
0030 LET R=2,B=5

0040 PRINT @(R*5,B+10),AS$
>RUN

STAGGER STAGGER
STAGGER

3-9 M6262A

Numeric Editing

M6262A

Terminals in normal mode provide 80 (0-79) horizontal
character positions (columns); in wide mode they provide
132. Printers provide either 80 or 132 (0-131) horizontal

character positions, depending on the width of the print-
er. Only the horizontal position can be specified on a
printer.

Terminals usually have 24 (0-23) vertical character posi-
tions (lines). If the vertical position is greater than

or equal to 24, and the terminal supports only 24 lines,

the display appears at (0,0), line 0, column O (top left

of scan).

Formatted display of numeric values is provided by format
expressions.

Editing of numeric values to be printed or displayed is
provided by a form expression which includes a form opera-
tor (:) and a format mask. The format mask may be a
string constant or string variable. The form expression
follows a numeric expression as follows:

PRINT numeric expr:"###, ##0.00+"
BS$=STR (num-expr:"###, ##0.00+")

or

AS="4#4##,440.00+"
PRINT num-expr:A$
BS$=STR (num-expr:AS$)

Following are numeric editing options:

num-expr The numeric expression that specifies the
value to be printed or displayed.

Indicates the beginning of the format mask.

0 Zero forces the printing of a digit or a zero
in the position indicated.

Pound sign indicates a position that is to be
filled by a digit of the expression, but sup-
presses the printing of a leading or trailing
zero when there is no digit.

* The asterisk is used as a "fill" character in
lieu of the first # to cause printing of an

asterisk in each leading zero position fol-
lowing the printed data (e.g., "*##,##0.00").

S Dollar sign is a "floating" character used in
front of the first # or 0 to cause the print-
ing of a dollar sign in place of the right-
most suppressed leading zero.

, Comma is placed at the point where a comma is
inserted, if required.

Period is placed at the point where a decimal
point is inserted, if required.

Format masks can also be used in converting numeric data
to string data:

LET A$=STR(N:"000")

Any one of the optional elements below can be used to in-
dicate the sign of the output value. The sign element can
be placed at the beginning or the end of the format mask

to establish the position of the output sign character and
can be preceded by "B" (the letter) characters to force
the insertion of blanks at the positions indicated.

For example:
>PRINT —1:"#4#4#,##0.00BB-"

1.00 -
>

or
>PRINT —-1:"—##0.00"
> -1.00

>

If you choose to omit all sign editing elements, the value

to be output will be an absolute value. Optional elements

include:

(mask) outputs the value masked as specified; en-
closed in parentheses if negative, no
parentheses if positive. The left

parenthesis "floats", like the dollar sign,
to the left of the numeric expression.

+ outputs "+" if the value is positive and "-"
if the value is negative. This will be
"floating" if specified at the beginning of
the mask.

- outputs a blank if the value is positive and
"-" if the value is negative. This will be
floating if specified at the beginning of the
mask.

3-11 M6262A

DB outputs DB if the value is positive and CR if
the value is negative.

CR
outputs two blanks if the value is positive
and CR if the value is negative.

B outputs a blank in this position.

If the value of the number to be printed to the left of
the decimal point exceeds the mask size, an error 43
results. If there are more significant decimal places to
the right of the decimal point than the mask allows, the
number is rounded and truncated when output through the
mask.

For example:

>AS="+4#4#, ##0.00M
>A=.05

>PRINT A:AS
+0.05

>PRINT 1000:AS
> +1,000.00

>A=-50

>PRINT A:AS
-50.00

>PRINT .005:A$
+0.01

>A=5.0555
>PRINT A:AS
>+5.06

NOT E

When using more than one floating element, only
one will float. Some non-standard combinations
of mask elements yield unusual results.

Non-Formatted Most printing of numeric values is accomplished in a
Printing of formatted manner. However, Business BASIC provides the
Numeric Values ability to output numeric values in a non-formatted or

free—form manner.

M6262A 3-12

When a numeric value in a PRINT statement does not have an
associated form operator (:), the manner in which the
value prints is determined by the arithmetic mode. The
number 1is rounded first according to the precision in ef-
fect, then output with a leading sign, if negative, other-
wise a blank.

If the program is in floating point mode, the value is
printed as a floating point number, consisting of the sign
followed by the fractional part of the value (shown as a
decimal number with up to 14 positions), followed by the
exponent of the value (in the form E+nn).

For example:

.2531E+01
-.17391621E-04

The system inserts one blank space before the first digit
of a positive number prints.

3-13 M6262A

NOTES

SECTION 4 - DIRECTIVES

A directive is the key element of the BASIC statement, as
it instructs the system to perform such specific opera-
tions as PRINT, READ, LOAD, etc

Directives can be executed in both console and program
modes, unless otherwise noted for a directive.

This section describes the BB86 standard directives and is

presented in alphabetical order. BOSS/IX and BOSS/VS
specific directives are described in later sections.

4-1 M6262A

BEGIN BEGIN

Format BEGIN {{EXCEPT} var—-list}

where variable-list is a list of up to 63 variable and
array names, separated by commas. Numeric arrays are
represented by their names followed by " (ALL)".

Description The BEGIN directive without a variable list resets the
system by performing the following functions:

1. Resets the ERR and CTL system variables to zero.

2. Resets incomplete GOSUB and FOR/NEXT loops.

3. Resets precision to 2.

4. Clears the user data area, eliminating all variable
definitions.

5. Closes all OPEN files and devices.

6. Deactivates SETESC, SETCTL and SETERR.

The BEGIN directive with a variable list and BEGIN fol-
lowed by EXCEPT and a variable list does all the items
above except item 4.

If BEGIN occurs in a CALL'ed program, but before the ENTER
statement, it has no effect on the entered variables. If
BEGIN occurs after the ENTER, then the variables are
cleared in the CALL'ed program only; the connections be-
tween the variables in the CALL'ed and CALL'ing programs
are severed.

Example 1 >ONE=1, TWO=2, THREE=3, FOUR=4
>PRINT ONE, TWO, THREE, FOUR
1234
>BEGIN TWO

>PRINT ONE, TWO, THREE, FOUR
103 4

>BEGIN EXCEPT THREE

>PRINT ONE, TWO, THREE, FOUR
0030

M6262A 4-2

BEGIN BEGIN
(cont'd) (cont'd)

Exanple 2 Program 1; CALLER

0010 CALLER1$="ABC"

0020 CALLER2=7

0030 CALL "CALLED", CALLER1S, CALLER2
0040 PRINT CALLER1S$, CALLER2

Program 2; CALLED

0010 ENTER CALLED1S$, CALLED2
0020 CALLED1$=CALLED1S$+CALLED1S
0030 CALLED2=CALLED2+CALLED2
0040 BEGIN

0050 CALLED1$="NEW"

0060 CALLED2=12

0070 PRINT CALLED1S$,CALLED?2
0080 EXIT

>RUN "CALLER"
NEW 12
ABCABC 14

In this example, CALLER passes values for CALLED1S$ and
CALLED2 to CALLED. These are modified by CALLED, updating
the values of CALLER1S$S and CALLER2 in CALLER before the
link is severed by BEGIN. Once the link is severed, fur-
ther changes to CALLED1$ and CALLED2 do not affect
CALLER1S$ and CALLER2.

4-3 M6262A

CALL CALL

Format CALL "prog-ID" {,ERR=stno} {,arg-list}

where argument-1list is a list of one or more variables or
expressions, separated by commas.

Description The CALL directive is used to transfer control and pass
arguments to another program

Each argument in the argument list is referenced in the
CALL'ed program by a variable or array name in the cor-

responding ENTER statement.
When a CALL'ed program ends, control is returned to the

command following the CALL statement in the program
originally issuing the CALL.

Arguments passed to a called program can be returned to
the calling program with or without a change in their
values, depending on the manner in which the CALL argument
list is used. 1In Table 4-1, "Y" indicates that the passed
variable or array value is subject to change upon return-—
ing from a CALL'ed program (call by reference), and "N"
indicates that the passed value is used locally by the
CALL'ed program and does not change the value in the
CALL'ing program when control is returned (call by value).

An attempt to pass the same variable twice in the same
CALL results in an ERROR 38. For example, CALL "PROGRAM",
AS$, B, C, B+0 is correct, but CALL "PROGRAM", AS$, B, C, B
results in a ERROR 38.

Examples 1000 CALL "MEACAB"

1010 CALL "MEABUS", ERR=12000,2$,B

M6262A 4-4

CALL

(cont'd)
CALL ENTER
Argument Argument
B
A+n A

(n=numeric expression
or constant)

AS BS
AS<5,1) BS
"XYZ" C$
D (1) E
D (ALL) E (ALL)

Table 4-1.

CHANGE

CALL/ENTER DIRECTIVES

ACTION/RESULT

A in the calling program
by reference to A in the

A in the calling program
by reference to B in the

CALL
(cont'd)

is used/modified
called program.

is used/modified
called program.

A in called program is set to value of the
calling program 's A plus the value of n.
The value of A in the calling program is

unchanged.

AS in caller is used/modified by reference

to B$ in called program.
caller can be changed.

Original AS$ of

The passed sub-strings are not modified.

C$ in called program is set to "XYZ".

E in the called program is set to value of

the caller's D(1).
not changed.

E(...)

The caller's D(1l) is

in called program is set to value

of each element of caller's D(...). The

caller's D(...)
changes.

changes each time E(...)
This is a special case to make
an entire array common.

M6262A

CLEAR

Format

Description

Examples

M6262A

CLEAR

CLEAR {{EXCEPT} var-list}

where variable-list is a list of up to 63 variable and
array names, separated by commas. Numeric arrays are
represented by their names followed by " (ALL)".

The CLEAR directive resets the system by performing the
same functions as the RESET directive, plus clearing the
user data area.

Since CLEAR does not CLOSE any open files or devices, it
is normally used to initialize a program that will use
files opened by a previously executed program.

CLEAR performs the following functions:

o Resets the ERR and CTL system variables to zero.

o Resets incomplete GOSUB and FOR/NEXT loops, clears the
stack.

o Resets precision to 2.

o Resets active statement numbers to 0 for SETESC,
SETCTL, and SETERR.

o Clears the user data area eliminating existing variable
definitions.

The CLEAR directive used with a variable list resets only
the variables and arrays in the list. CLEAR followed by
EXCEPT and a variable list resets only variables not in
the variable list.

If CLEAR occurs in a CALL'ed program, but before the ENTER

statement, it has no effect on the entered variables. If
CLEAR occurs after the ENTER, then the variables are reset
in the CALL'ed program only.; the connections between the

variables in the CALL'ed and CALL'ing programs are severed
(refer to the BEGIN directive, example 2, for an example).

>0NE=1, TWO=2, THREE=3, FOUR=4

>PRINT ONE, TWO, THREE, FOUR
12 34

>CLEAR TWO

>PRINT ONE, TWO, THREE, FOUR
1 0 3 4

>CLEAR EXCEPT THREE

>PRINT ONE, TWO, THREE, FOUR
0030

CLOSE

Format

Description

CLOSE

CLOSE (fileno {,ERR=stno} {,IND=num-expr})

IND= is used only for 1/2-inch magnetic tape access (see
the description below for permitted values).

The CLOSE directive releases use of a file or device.
CLOSE also unlocks files that were locked using the LOCK
directive.

Files and devices are also closed when a STOP, END or
BEGIN directive is executed, except when the END is in a
CALL'ed program.

No error is returned if CLOSE is issued for a channel that
is not open. If a channel is open but there is a problem
closing the device, an error is returned. Such problems
can be caused by an I/0 error on a write to a disk file
prior to closing the channel, or an attempt to close a
printer which is offline (on an 8000 BOSS/VS system , no
error will be returned).

Tape

When closing a file on 1/2-inch tape, the results differ
depending on what actions were performed.

If the tape was opened and either closed immediately or

opened and only accessed by READRECORD's, the file is
closed and no filemarks are written to tape.

If one or more WRITERECORD's were performed, then at least
one filemark is written, at the point writing was stopped.
The exception is in the case that the previous action was
an unsuccessful WRITERECORD, in which case no file marks
are written, regardless of the IND= specified, and an
ERROR 5 is reported.

The IND= option affects the tape CLOSE as follows:

IND

0 or 2 - rewinds tape to load point

IND = 1 - rewinds tape to load point and takes tape
offline

IND = 9 - writes 2 file marks on tape, then rewinds tape

If IND= is not specified when closing the tape, nothing is
done except that the tape is closed.

4-7 M6262A

CLOSE
(cont'd)

Examples

M6262A

CLOSE

(cont'd)
In addition, if the preceding action was a (successful)
WRITERECORD, one file mark is written if IND= is not
specified, two file marks are written if IND= 1is

specified.

An ERROR 13 is reported if an IND= is specified other than
0,1,2, or 9, but two file marks are still written.

1200 CLOSE (1)

1200 CLOSE (1,ERR=0150) The ERR= is ignored.

CONSOLE LOCK

Pormat

Description

CONSOLE LOCK

CONSOLE LOCK {str—expr {,MSG=str-expr}}

where the two string expressions are, respectively, a
password and a message.

The CONSOLE LOCK directive prevents BASIC from automati-
cally dropping out of a program into console mode.

BASIC attempts to enter console mode when the following
conditions occur:

o an ESCAPE without an active SETESC
) an ERROR occurs without an active SETERR, ERR=, END= or

DOM=
o completion of a program run from BASIC console mode
o completion of a program with "-nr" specified on the

command line (BB7)

CONSOLE LOCK is ignored if:

o a SETESC is active when the ESCAPE key is pressed
o a SETERR is active or an ERR=, DOM= or END= is
specified in the directive causing the error

In these cases, the specified branches are taken.

When BASIC attempts to enter console mode with CONSOLE
LOCK active, the user is prompted with the message string.
The user must then enter the password. If the password is
entered incorrectly, BASIC attempts to continue execution
of the program.

WARNING

If there is the directive STOP, ESCAPE or END

in the program, CONSOLE LOCK will allow the user
to enter the password three times. If the user
cannot enter the correct password in three tries,
BASIC will log the user off the terminal. Any
other way, CONSOLE LOCK will allow the user to
enter the password continually.

4-9 M6262A

CONSOLE LOCK CONSOLE LOCK
(cont'd) (cont'd)

Examples 0010 CONSOLE LOCK

Turns off the console lock function, clearing the pass-
word and message strings.

0100 CONSOLE LOCK "secret",msg="Enter password: "

Turns on the console lock function, with "Enter
password:" displayed as the prompt, and "secret"
defined as the password.

1000 CONSOLE LOCK "NEW"

Activates the console lock feature using the password
"NEW", keeping the prompt message unchanged.

10000 CONSOLE LOCK ""

Turns off the console lock feature by clearing the
password. The message is preserved for subsequent use.

M6262A 4-10

CREATE

Format

Description

CREATE

CREATE ATTR= str-expr {,EM T=str-expr} {,ERR=stno}

The CREATE directive creates a new file with the at-
tributes described in the first string expression. The
attribute can be built by the program or returned by the
ATTR function.

CREATE will not create any type of program file
(organizations BAS, COB or PAS).

The FMT= option is used to specify the format of a multi-
keyed file. Refer to the MULTI directive for the string
details.

The CREATE directive is similar to the FILE directive, but
is more system independent and provides more parameters.

CREATE permits the creation of remote files.

Attribute String Format

The attribute string has the same format as the string
returned by the ATTR function using the LONG form. All of
the ATTR function attributes may be specified, although
the RECORDS USED clause is ignored. Any alphabetic char-—
acters in the string may be either upper or lower case
with no change in effect except for those in the NAME at-
tribute under either of two conditions:

1. the system is BOSS/IX or
2. the total number of characters in the name is six or
less.

In either of these cases, changing a letter in the NAME
changes the name of the file.

If an attribute is specified more than once in the string,
the last specification takes effect.

Spaces are ignored on either side of the equal sign (=) in
an attribute clause and at either end of an attribute
clause. Spaces may not occur within keywords, numbers or

value strings.

If an attribute clause is omitted , CREATE will assign a
default value, except for NAME clause and the KEY SIZE
clause for a direct file, which are required. The follow-
ing default values are assigned:

4-11 M6262A

CREATE
(cont'd)

Examples

M6262A

CREATE
(cont'd)

ORGANIZATION = IND

RECORD SIZE = 80

REOORDS_ALLOWED = 1000

REOORDS USED = (ignored)

KEY_SIZE = 0 (required for direct file)

INITIAL = (system dependent value)

GROWTH = (system dependent value)

OWNER = (current account)

USAGE RIGHTS = (the default for the system or account)

If the EM T= option is used, then ORGANIZATION=MUL is re-
quired.

Assigning explicit OWNER and USAGE RIGHTS will cause dif-

ficulties in writing interfamily-compatible programs.

For

1000

1000

1010
1010

further details, refer to the ATTR function.

AS=ATTR (1, "ALL") ; CREATE ATTR= AS$+"NAME=XYZ

:RECORDS_ALLOWED=10"

CREATE ATTR= "NAME=MYFILE REOORD_SIZE=10

:RECORDS ALLOWED=10"

DBF FNx DEF FNX
DEF FNx$ DEF FNx$

Format DEF FNx(var—-list) = arithmetic-expr

DEF FNx$ (var—-list) = str—expr

where x is the function name, following the same syntax
rules as for variables.

Description DEF is used to create user defined functions. There can
be a maximum of 63 functions in a program . These func-
tions are in addition to the predefined functions which
are part of the Business BASIC 86 language (see
"FUNCTIONS" in section 5).

The DEF FNx directive defines an arithmetic expression;
the DEF FNx$ directive defines a string expression.

Both DEF FN directives can only be used in Program Mode,
and neither can be part of a compound statement.

Either DEF FN directive can contain strings and numbers in
the argument list. However, the output (expression) 1is
limited to strings (DEF FNx$) or numbers (DEF FNx).

The formal parameters in the argument list are not "dummy"

variables used only by the DEF function. They can also be
referenced and used elsewhere in the program; however,
caution should be exercised because the values of the
variables can change.

When one of these DEF functions is called, the wvalues of
the arguments being passed are moved into the correspond-
ing formal arguments of the DEF. For example:

>10 DEF FNS (X) = X*X
>20 LET X=-1
>30 PRINT X,FNS(10),X

>RUN
-1 100 10

Notice that referencing the function FNS changed the value
of its formal argument, X, from -1 to 10.

M6262A

DEF FNx
DEF FNx$
(cont'd)

Examples

M6262A

DEF FNx
DEF FNx$
(cont'd)

0010 DEF FNA(A,B) = (A+B)/A
0020 LET C=FNA (2, 6)

Statement 20 assign A=2, B=6 and C=(2+6)/2=4
0010 DEF FNAS (AS,BS) = BS+"-"+AS

1000 LET X$="SIDO",Y$="DOE"
1010 PRINT FNAS (XS$,YS)

>RUN
DOE-SIDO

DELETE DELETE

Format DELETE stno-a
DELETE stno—a,
DELETE , stno-b
DELETE stno-a, stno-b

where, if both stno-a and stno-b are specified, stno-a <
stno?b.

Description The DELETE directive is used to remove one or more state-
ments from the program in memory. The BB86 standard and
BOSS/IX do not allow DELETE to be used in a CALL'ed pro-
gram (although BOSS/VS does allow it in a CALL'ed pro-
gram) .

The combination of statement numbers and the comma have
different effects. Refer to the examples below.

Attempting to DELETE a nonexistent line number has no ef-
fect and does not generate an ERROR 21. Attempting to
delete a nonexistent statement number by typing the number
followed by a carriage return does generate an ERROR 21.
Examples DELETE

Deletes all statements in memory
DELETE 100

Only statement 100 is deleted

DELETE 100,

All statements from 100 to the end of the program are
deleted

DELETE ,100

All statements from the beginning of the program
through statement 100 are deleted

DELETE 100,200

All and only statements from 100 through 200 are
deleted.

4-15 M5262A

DIM array DIM array

Format DIM array-name (rangel {,range2 {,range3}})
where:
array-name = the name of the numeric array, using the same

syntax as for numeric variables

rangel ... range3 = integers giving the size of each array
Description The DIM array statement is used to define a numeric array.
An array is a 1-, 2- or 3-dimensional grouping of numeric

values, referenced by a common name and the appropriate
dimensions as follows:

A two-dimensional array, called a "matrix," is referenced
by the name and two subscripts; the statement DIM A (3, 3)
produces an array of 16 elements:

A(0,0) A<0,1) A(0,2) A(0,3)
A(1,0) A(l,1) A(1,2) A(l,3)
A(2,0) A(2,1) A(2,2) A(2,3)
A(3,0) A(3,1) A(3,2) A(3,3)

4

~
~

The statement DIM A(3,3,3) produces a 64 element array.
When a DIM statement is executed, all elements of the
array are set to zero. Previously defined arrays can be
set to zero by executing another DIM statement. The area
required for the array can be released by dimensioning the
array to zero:

0010 DIM A(0)
BB86 supports long array names following the same syntax
as for numeric variables; the name may be up to eight

characters and digits long, but must begin with a letter.

A simple numeric variable and an array can both have the
same name without conflict.

DIM is allowed on ENTER'ed variables.

M6262A 4-16

DIM array

(cont'd)

Examples

DIM array
(cont'd)

00010 DIM A(0)

Releases most of the dimension space.

00100 DIM A<2,2,2)

Defines a three-dimensioned, 27-element array.

0200 DIM A(5)

0210 FOR 1=0 TO 5

0215 LET A=37

0220 LET A(I)=I*10; NEXT I

0225 PRINT A(5),A(4),A(3),A(2),A(1),A(0),A
>RUN

50 40 30 20 10 0O 37

Note that DIM A(3,0) is okay; but DIM A(3) will result
an error 42.

in

M6262A

DIM string DIM string

Format DIM variable-name (int-expr {,str-expr})
where:

variable—-name = the name of the string variable to be

dimensioned
string-expr = is a character used to fill the dimensioned
variable.

Description The DIM string directive creates the named string variable

with the specified length. The string variable is in-
itialized with blanks or with the fill character speci-
fied. If the fill character expression is more than one
character long, only the first is used.

Dimensioning a string variable filled with underlines, for
example, may be useful in programming input routines in
which the user is prompted by showing the allowable length
of the input. For each field you need only display the
required number of underlines by printing the subscripted

string.
Examples 1200 DIM AS$S(5) - assigns 5 blanks to AS
1300 DIM B$(5,"A") - assigns "AAAAA" TO BS$S

M6262A 4-18

DIRECT

Format

Description

Examples

DIRECT

DIRECT "file-id", keysz, recno, recsz {,ERR=stno}

where:

keysz = the key size (min=1, r nax=56)

recno = the maximum number of records in the file
(max=8, 388, 608)

recsz = the size, in bytes, of each record in the file

(max=32,767) .

The DIRECT directive creates a Direct type file. A Direct
file is a single-keyed file.

The key, which provides access for both reading and writ-
ing a record, is usually a data field itself, such as Em-
ployee number or Customer Name, or a combination of
fields. The key is established when the record is ini-
tially written into the file. Each key must be unique.

Records of the file can also be accessed sequentially, by
using the IND= I/0 option, or in logically ascending order
of the keys.

DIRECT "HIT", 10,100,50

This defines a Direct file named "HIT" with a key size of
10 bytes, and a maximum of 100 records of 50 bytes each.
The file is created in the user's primary prefix. The
filename may have specified an absolute filename indicat-—
ing a specific directory.

4-19 M6262A

ENCRYPT ENCRYPT

Format ENCRYPT "source prog-id","destination prog-id" {,ERR=stno}
where:

source prog-id = the string expression representing the
name of the PROGRAM file to encrypt

destination prog-id = the string expression representing

the name of the PROGRAM file which will contain
the encrypted program.

Description The ENCRYPT command encrypts the BASIC program contained

in the source file, and leaves the result in the destina-
tion file.
If the destination file does not exist, it will be creat-
ed. If the destination file specified already exists, its
file type must be PROGRAM. Specifying a null string as a
file name results in an error 10.

Specifying the same file name for both source and destina-

tion will cause the source program to be encrypted over
itself.

WARNING
The source cannot be recovered if

a program is encrypted over itself.

The ENCRYPTed program will RUN the same as the original
program . Any attempt to LIST, EDIT, SAVE, INSERT, DELETE,
or MERGE statements will generate an error 18.

ENCRYPT will not operate on a remote program file.

Example >ENCRYPT "ORDINARY", "SECRET"

This takes the BASIC program called "ORDINARY", encrypts
it, and then stores the encrypted program as "SECRET".

M6262A 4-20

END END

Format END

Description The END directive is used to terminate a program
END performs the following operations:
o Resets the program execution counter to the first
statement of the program

o CLOSE'S all open files and devices, except when used to
exit a CALL'ed program

o Performs a RESET operation

o Returns the terminal to Console Mode

o If executed from a CALL'ed program, END performs EXIT
The termination point established by the END directive is
also used to discontinue MERGE (but not VMERGE) opera-
tions. Therefore, END should only be used at the end of a

program.

END does not alter the contents of either the user data
area, or the user program area.

All MAI Basic Four systems have an AUTO-END feature which
automatically ends every program; this makes use of the
END statement optional. However, use of END is recom-
mended, and is required when MERGE (but not VMERGE) is

used for Index files; if you use serial files, the MERGE
stops with an error 2.

Example 9999 END

4-21 M6262A

ENDTRACE ENDTRACE

Format ENDTRACE

Description The ENDTRACE directive is used to terminate the listing of
statements begun by execution of the SETTRACE directive.

Example >ENDTRACE

0200 ENDTRACE

ENDTRACE ENDTRACE

Format ENDTRACE
Description The ENDTRACE directive stops string expression transla-
tion.

Refer to the SETTRANS directive for further explanation of
string translation.

Example 0100 ENDTRACE

4-23 M6262A

ENTER

Format

Description

Examples

M6262A

ENTER

ENTER arg-list

where argument-list is one or more variable names, sepa-—
rated by commas. It must contain exactly the same number
of elements as the variable list of the corresponding CALL
in the calling program. Also, corresponding variables
must be of the same kind (numeric, string or dimensioned
array) .

The ENTER directive defines a set of variables in a called
program that corresponds to a set of variable names in the
argument list of the calling program

ENTER is used for passing arguments (values) from the
CALL'ing program to the CALL'ed program , and back again.

Arguments passed to the called program can be returned to
the calling program with or without a change in their
values, depending on the manner in which the CALL argument
list is used. Refer to table 4-1 (under the CALL
directive) for a summary of the conditions that do and do
not change argument values.

Each time a public program is called, it can execute only
one ENTER directive.

Refer to the CALL directive for a more extensive example.
0010 ENTER AS,B,C

Passes parameters AS$, B and C between the CALL'ed and
the CALL'ing programs.

0010 ENTER A (ALL)

Passes the entire numeric array of parameters between
the CALL'ed and the CALL'ing programs.

ERASE ERASE

Format ERASE "file-id" {,ERR=stno}

Description The ERASE directive deletes a file entry from the disk
directory. It also deallocates all the sectors and blocks
in use by the specified file. Since removal of the direc-—

tory entry cancels all the references to the space oc-
cupied by the file, an erased file cannot be reclaimed.

The ERASE directive will erase a specific file if the
file-id is a full path name (i.e., with directory names).
If the path name is partial, then it will erase the match-
ing file name contained in the first directory in your
list in which the file is found.

Examples 01000 ERASE "AGOOF"

Deletes the file "AGOOF" from the user's current work-
ing directory.

4-25 M6262A

ESCAPE ESCAPE

Format ESCAPE

Description When executed in a program, ESCAPE causes an interruption
of the program, lists the ESCAPE statement, and places the
terminal in console mode. Continuation of the program

from this point is accomplished by entering RUN.

When in console mode, typing the directive ESCAPE causes
the system to list the next line to be executed in the

currently running program. (However, there is no indica-
tion of which statements in that line remain to be ex-
ecuted.)

Strategic placement of ESCAPE within a program permits pe-
riodic examination of data, thereby simplifying program
debugging. (However, it may not be used in a called pro-
gram on BOSS/IX, but may be used on BOSS/VS.)

Example 2000 ESCAPE

M6262A 4-26

EXECUTE EXECUTE

Format EXECUTE str-expr

where the string expression is either a console mode com-—
mand or a line of program code.

Description EXECUTE executes the command contained in the string ex-—
pression.

The EXECUTE directive can only be used in program mode.
The BB86 standard and BOSS/IX BASIC do not permit EXECUTE
in CALL'ed programs; however, BOSS/VS does allow it.

EXECUTE permits the use of directives and commands in pro-
gram mode which are normally available only in console
mode.

EXECUTE can be used to build statements, and so provides
an ability to generate and modify program statements.

Examples EXECUTE can be used to print the values in the variables
AQ0S, ...,A9S:

0010 FOR X=0 TO 9

0020 EXECUTE "PRINT (1)A"+STR(X)+"S$"
0030 NEXT X

EXECUTE can be used to execute system commands from a
BASIC program:

11000 INPUT "ENTER SYSTEM COMMAND TO EXECUTE: ", COMMANDS$
11010 EXECUTE COMMANDS

4-27 H6262A

EXIT

Format

Description

Examples

EXIT

EXIT {int-expr}

where the integer expression is a value from 0 to 255
representing an error code.

The EXIT directive is used to exit a CALL'ed program ,

returning control to the CALL'ing program

The first statement executed after an EXIT directive is
the statement following the CALL statement in the CALL'ing

program . If the CALL was made from console mode, EXIT
returns control to console mode.

If an integer expression is specified, the value is re-
turned to the CALL'ing program as an error code. If the
system variable ERR is used as EXIT'S numeric expression,
the error status of the called program becomes the error
status of the calling program.

16000 EXIT

16000 EXIT ERR

16000 EXIT A + B

EXITTO EXTTTO

Format EXITIO stno

Description The EXITTO directive transfers program control to a
specified statement number within the program. It is used
to exit from a FOR/NEXT loop without completing all the
statements in the loop, or to exit a subroutine (called by
GOSUB) without executing a RETURN.

The statement number referenced by the EXITTO statement
must be a constant, not a variable. If the specified
statement number does not appear within the program, pro-
gram control transfers to the next higher statement number
that does exist in the program

Example 0010 FOR 1=1 TO 10
0020 IF A(I)=B THEN EXITTO 0060

0050 NEXT I
0060 REM "COMPARE ROUTINE IS COMPLETE"

In this example, when A(I)=B, control branches to state-
ment 60.

4-29 M6262A

EXTRACT

Format

Description

Example

M6262A

EXTRACT

EXTRACT (fileno {,RETAIN} {,ERR=stno} {,END=stno }
{,DOM=stno} {,IND=int-expr} {,KEY=string-expr}
{, TBL=stno} {,SIZ=int-expr} {,TIM=num-expr}) {arg-list}
{, I0OL=stno}

where the argument list is a list of string or numeric
variables, separated by commas.

NOTE

A comma is to be inserted before IOL= only when
IOL= follows an argument list.

The EXTRACT directive reads fields of data from a file
into the respective variable fields in the statement.

EXTRACT differs from READ in two ways:

1. It prevents other users from accessing the record
until another operation is performed on the file by
that user;

2. It does not advance the record pointer to the next key
in the file, but sets the forward pointer to the ex-
tracted record.

If an EXTRACT is used before a WRITE, the WRITE does not
require a key; the extracted record is overwritten, and is
then released for access by other users.

If the information in a field is not required, an asterisk
(*) can be substituted for the variable name to bypass
processing of that field. The advantages of skipping
fields are speed and a reduction of memory used by the
program.

NOTE

Refer to section 7, "Input/Output Options."

0300 EXTRACT (1,ERR=2000,KEY=AS$)A,B

Reads and locks a record, setting record pointer to the
extracted record.

EXTRACT RECORD

Format

Description

Example

EXTRACT RECORD

EXTRACT RECORD (fileno, RETAIN (,ERR=stno} {,END=stno}
{,DOM=stno} {,IND=int-expr} {,KEY=str-expr}
{, TBL=stno} {,SIZ=int-expr} {,TIM=int-expr})
{string-variable}

where string-variable is a string variable into which the
record is read.

The EXTRACT RECORD directive reads a full record from a
file or device. If the SIZ= option is included, only the
size specified is read. All field marks in the record are
transferred as data.

EXTRACT RECORD differs from READ RECORD in two ways:

1. It prevents other users from accessing the record
until another operation is performed on the file by
that user;

2. It does not advance the record pointer to the next key
in the file, but sets the forward pointer to the ex-
tracted record.

If an EXTRACT RECORD is used before a WRITE RECORD, the
WRITE RECORD does not require a key; the extracted record

is overwritten, and is then released for access by other
users.

0200 EXTRACT RECORD (1,ERR=1000)AS
Reads and locks a record, setting the record pointer to
the extracted record. When a new WRITE RECORD directive

is executed to modify the file, the pointer is already in

position to write data to the correct record.

4-31 M6262A

FIELD ALIAS FIELD ALIAS

Format FIELD ALIAS (logical_unit [, ERR=stmt_num])
field_var# [=] name_string$
[, field_ yar# t =] name_string$...]
Description The FIELD ALIAS directive defines a link between one or

more field variables and actual field names in a multi-
keyed file. Fields aliases apply only to the logical
unit (s) for which they have been defined.

The string expression contains the actual name of the
field as it is defined in the multi-keyed file format, in-
cluding the #.

The use of field alias assignments allows for using multi-
keyed files without having to hard code field names into
each program. Aliases can be used throughout the program,

and the actual field names used only in the FIELD ALIAS
statement.

Example 0210 FIELD ALIAS (1) X#="DEPTNAME#"

0550 READ (1,KEY=X#=GS$) AS$,BS,CsS

M6262A 4-32

FIND

Format

Description

Example

FIND

FIND (fileno {,RETAIN} {,ERR=stno} {,END=stno} {,DOM=stno}
{,KEY=str-expr} {,TBL=stno} {,SIZ=int-expr})
{arg-list} {,IOL=stno}

where the argument list is a list of variables into which
fields of the record are to be read, separated by commas.

NOTE

A comma is to be inserted before IOL= only when
IOL= follows an argument list.

The FIND directive is used to read data from a file into
variables. FIND differs from READ and EXTRACT in that, if
the specified key is not in the file, FIND does not update
the key pointer position to the next highest key following
the unfound key. This difference makes FIND faster than
READ and EXTRACT when the specified key is not in the
file. 1If the key is in the file, about the same amount of
time is required for any of the three directives.

If the information in a field is not required, an asterisk
(*) can be substituted for the variable name to bypass
processing of that field. The advantages of skipping
fields are speed and a reduction of memory used by the
program.

NOTE

Refer to section 7, "Input/Output Options."

0200 FIND <1,KEY=K4,ERR=0500)2, *,BS

4-33 M6262A

FIND RECORD

Format

Description

Example

M5262A

FIND RECORD

FIND RECORD (fileno,RETAIN {,ERR=stno} {,END=stno}
{,DOM=stno} {,KEY=str-expr} {,TIBL=stno{ {,SIZ=size})
{string-variable}

where string-variable is the variable into which the
entire record is read.

The FIND RECORD directive is used to read a full record
from a Direct file into a variable in the same manner as a
READ RECORD or EXTRACT RECORD. FIND RECORD , however, does
not update the key pointer to the next highest key follow-—
ing a key that is not found. The difference makes FIND
RECORD faster than READ RECORD or EXTRACT RECORD if the
specified key is not in the file. If the key is in the
file, the three directives are approximately equal in
speed.

0200 FIND RECORD (1,KEY=K$,ERR=0500)AS$

4-34

M6262A

FLOATING POINT

Format

Description

Example

FLOATING POINT

FLOATING POINT

The FLOATING POINT directive is used to initiate the

Floating Point Mode. This mode turns off automatic round-
ing and thus maintains maximum accuracy (14 digits) while
permitting the generation of very large or very small
values by using "E" to indicate a power of 10.

BB86 allows numbers in the range 1E-62 to 1E62 or .lE-63
to .1E63.

Numbers are output in floating point notation unless a
mask is specified.

0010 FLOATINGPOINT
0020 FOR 1=0 TO 5

0030 PRINT 271;NEXT I

>RUN

.1E+01
.2E+01
.4E+01

.8E+01
.16+02
.32E+02

FOR/NEXT POR/NEXT

Format FOR numeric-variable = num-expr TO num-expr
{STEP num-expr}

where the numeric expressions represent, in order, the
start value, the end value, and the increment value for
the loop.

Description The FOR/NEXT loop is used to repeat a series of statements
in a program , with the beginning and ending conditions
given as an interval.

When a FOR statement is first executed , the numeric vari-
able is set equal to the start value. The statements fol-
lowing the FOR statement are executed in sequential order

until the NEXT statement is reached . The value of the nu-
meric variable is then incremented by the step value (the
step value is one if the value is not specified) and com-—
pared to the end value. The step value must not be zero.

If the variable value is less than the end value (greater
than, in the case of a negative STEP), control passes to
the statement following the FOR STATEMENT . This sequence
is repeated until the variable value is greater than (less
than, for negative STEP) the end value. Execution then
continues with the statement following the NEXT statement.

FOR/NEXT loops can be "nested" to a maximum of 256 FOR/

NEXT/GOSUBs (above that, error 31 is returned). However,
POR/NEXT loops cannot cross. For example:
Correct

0100 FOR 1=5 TO 1 STEP -1
0110 FOR J=1 TO 5

0120 NEXT J

0130 NEXT I

Incorrect

0100 FOR 1=1 TO
0110 FOR J=1 TO 5
0120 NEXT I
0130 NEXT J

&)

Attempting to delete an active FOR statement, either by

escaping to console mode and executing DELETE or by using
EXECUTE in program mode, generates an error 27. FOR/NEXT
loops can terminate normally, as described above, or by an
EXITTO statement executed before the specified number of
iterations is complete.

M6262A 4-36

M6262A

FOR/NEXT
(cont'd)

Examples

Note

FOR/NEXT
(cont'd)

that a FOR...NEXT loop will always be executed at

least once, so that the following will print "1."

100 FOR 1=1 to O
110 PRINT I,
120 NEXT I

These examples are normal FOR/NEXT loops where the series
of statements is repeated until the loop is terminated.

FOR/NEXT loop:

0010
0020
0030
0040

>RUN
1 2

FOR 1=1 TO 5

PRINT I,

NEXT I

PRINT " FINAL VALUE = * \ I

3 4 5 FINAL VALUE = 6

Nested FOR/NEXT loop:

0010
0020
0030
0040
0050
0060

>RUN

FOR I = 1 TO 2
FOR J=1 TO 3
PRINT 10*I+J,
NEXT J

PRINT ' LF'
NEXT I

11 12 13
21 22 23

The following example is a loop which terminates before
its normal number of executions. Note the use of EXITTO
rather than GOTO to escape the loop.

FOR/NEXT loop

0010
0020
0030
0040
0050
0060
0070
0080
0080:
0090
0100
0110
0120

BEGIN

INPUT "NUMERIC? -",AS

IF AS$="END" THEN GOTO 00120

IF A$=" " THEN LET AS$="0"

LET Fs$="Y"

FOR 1=1 TO LEN(AS)

REM "THE FOLLOWING LINE EXITS TO 100

J=POS (AS$(1,1)="0123456789+- ");IF J=0 OR J>10 AND
10 1 THEN FS$="N";EXIT TO 00100
NEXT I
IF F$="N" THEN PRINT "INVALID"
GOTO 0030
END
4-37

GOSUB GOSUB

Format GOSUB stno

Description The GOSUB directive calls an internal subroutine, trans-
ferring program control to the specified statement number.

Statements in the subroutine are executed sequentially
until a RETURN statement is found. Control then returns
to the statement following the GOSUB.

GOSUB can be executed only in program mode.

Every subroutine referenced by a GOSUB directive must be
ended by a RETURN or EXITTO statement. RETURN resumes
program execution at the statement immediately following
the GOSUB. EXITTO resumes execution at a specific state-
ment number and clears the top level entry from the RETURN

address stack.

Attempting to delete an active GOSUB statement, by either
escaping into console mode and using the DELETE statement
or using the EXECUTE directive, generates an ERROR 27.

Example 0010 REM "EXAMPLE OF REPORT PROGRAM USING GOSUB"
0020 BEGIN
0030 OPEN (7)"LP"
0040 OPEN (1) "INVENT"
0050 LET PS="###0.00"
0060 GOSUB 1000
0070 READ (1,END=00500,ERR=00600)A,B,C,D
0080 LET L=L+1
0090 IF L>50 THEN GOSUB 01000
0100 PRINT (7)A:PS$,@(10),B:PS$,@(20),C:P$,Q@(30),D:PS
0110 GOTO 00070
0500 PRINT "END OF RUN"
0510 STOP
0600 PRINT "ERROR : ",ERR:"000", "OCCURRED ON READ"
0610 STOP
1000 REM "SUBROUTINE TO PRINT HEADINGS"
1010 LET P= P+1,L=0
1020 PRINT (7) 'FF',"ITEM",Q@(10),"QUANTITY",Q (20),
1020:"COST", $(30), "PRICE", @(70),"PAGE",P,'LF'
1030 RETURN

M6262A 4-38

GOTO GOTO

Format GOTO stno
Description The GOTO directive unconditionally transfers program con-
trol to the specified statement number. If the specified

program number does not exist, the statement with the next
higher number is executed.

GOTO can be used in console mode (followed by a RUN
command) to direct program control to any statement num-
ber. This is useful in program debugging.

Example 0100 OPEN(7) "LP"
0110 LET X=L+1
0120 GOTO 00500
0130 PRINT "THIS"

>GOTO 130

>RUN
THIS

NOTE
In BOSS/VS, "GOTO n" will automatically start

executing from the specified statement number
(no need to RUN).

4-39 M6262A

IF/THEN/ELSE/ENDIF

Format

Description

M6262A

IF/THEN/ELSE/ENDIF

IF log—-expr {THEN} stno-a {ELSE stno-b} {ENDIF}

The IF directive allows conditional execution of BASIC
statements based upon the result of a logical comparison
between two or more data items.

The logical expression portion of the statement contains
two expressions, either string or numeric, separated by a

relational operator, or a compound of such logical expres-

sions. The relational operators are;
= equal to

< less than

> greater than

<> or <> not equal to

>= or => greater than or equal to
<= or =< less than or equal to

Some examples of logical expressions are:
IF =B
IF Len(X$) <= 16
IF >= B
IF A/B = E

b=

Q

Several logical expressions can be evaluated in relation
to each other by use of the AND and OR operators. An un-—
limited number of AND's and OR's can be used in an IF

statement, and they have equal precedence; the system by
default evaluates them from left to right. Parentheses
can be used to change the order of evaluation. For
example:

0010 LET A=1, B=2, C=3
0020 IF A=1 OR B=2 AND C=0 THEN PRINT "20 IS TRUE"
0030 IF A=1 OR (B=2 AND C=0) THEN PRINT "30 IS TRUE"

>RUN
30 IS TRUE

The action taken by the IF statement is determined by
whether the logical expression is true or false. If the
logical expression evaluated as true, the THEN clause is
executed. If the expression evaluates as false, the ELSE
clause is executed. If no ELSE clause exists, the next

statement is executed.

Each THEN or ELSE clause can contain a single or compound
BASIC statement. Any BASIC statement is wvalid except DEF,
IOLIST, and TABLE.

IF/THEN/ELSE/ENDIF
(cont'd)

Examples

IF/THEN/ELSE/ENDIF
(cont 'd)

IF/THEN/ELSE commands can be fully nested into a single
statement in BB86. The nested IF can occur in either the
THEN or the ELSE clause of the preceding IF. For example:

IF A = 1 THEN

IF B = 2 THEN PRINT "HERE"
ELSE PRINT "THERE"

ELSE PRINT "DOWN UNDER"

The ELSE clause always terminates the most recent untermi-
nated IF. Above, the first ELSE terminates the second IF,
and the second ELSE terminates the first IF.

The ENDIF terminator is used in nested IF statements to
terminate an IF clause that is not terminated with an

ELSE. For example:

IF A ? 1 THEN
IF B = 2 THEN PRINT "HERE"
ENDIF
ELSE PRINT "DOWN UNDER"

In this scheme, the ENDIF terminates the second IF and the
ELSE terminates the first IF. Without the ENDIF, the ELSE
would terminate the second IF and the first IF would term-—
inate without an ELSE clause.

BOSS/VS allows ENDIF to be preceded immediately by a
semicolon; BOSS/IX does not.

The ENDIF clause is also used to delimit the scope of an

IF statement, making other statements following it uncon-
ditional:

0030 IF A=20 THEN GOSUB 09000; C=3
0040 IF A=20 THEN GOSUB 09000 ENDIF; C=3

Line 30 sets C=3 ONLY IF A=20, but 40 sets C=3 in either
case.

10 IF A=B GOSUB 6000 ELSE GOTO 9999
It is not necessary to type the word "THEN" as part of a
THEN clause if another directive is involved (e.g., GOTO,

GOSUB, etc.):

>LIST ;REM BOSS/IX form
0010 IF A=B THEN GOSUB 6000 ELSE GOTO 9999

>LIST ;REM BOSS/VS form
0010 IF A=B GOSUB 6000 ELSE GOTO 9999

4-41 M6262A

INDEXED

Format

Description

Example

M6262A

INDEXED
INDEXED "file-ID", recno, recsz {,ERR=stno}
where:
recno = the maximum number of records for the file
(maximum = 8,388,608)
recsz = is the size, in bytes, of each record in the file

(maximum = 32,767).

The INDEXED directive defines a file comprising records
that can be read from, or written to, either sequentially
or randomly by record number (the first record is number
0).

Records defined in an indexed file are all the same
length. Fields within the records are delineated by spe-
cial characters called field marks, which are inserted by
the system.

00130 INDEXED "FINGER", 100, 50

INITFILE

Format.

Description

Example

INITFILE

INITFILE "file—-ID" {,ERR=stno}

The INITFILE directive initializes a file. The name,
type, structure, usage rights and access modes of the file
are preserved, but the contents are deleted.

In the case of multi-keyed files, the format string is
preserved. (The format string includes, among other
things, the primary key and secondary key definitions.)

An attempt to initialize an opened file generates an ERROR
0.

INITFILE can initialize a remote file.

>INITFILE "STARTOVER"

4-43 M6262A

INPUT INPUT

Format INPUT {(fileno {,RETAIN} {,ERR=stno} {,END=stno}
{,DOM=stno{ {,IND=int-expr} {,KEY=str-expr} {,TBL=stno}
{, TIM=time-expr} {,SIZ=int-expr})} {,mnemonic}
{,string-const} {,variable} {,IOL=stno}

where:
mnemonic = a terminal mnemonic
string-const = the input prompt message

variable = the variable to receive the input data.

NOTE

A comma is inserted before IOL= only when IO] >
is used with a variable.

Description The INPUT directive is identical to the READ directive in
all respects. Because READ is commonly used for files and
INPUT is commonly used for the terminal, only terminal
INPUT is described here. Refer to the READ directive for
file input

The INPUT directive provides for two-way communication be-
tween the operator and the program. For each variable in
the statement, INPUT prompts for one keyboard entry.

An INPUT may contain messages to be displayed on the ter-
minal prompting the operator for specific information.
The operator's response is read into the variable follow-
ing the message.

Several messages and variables can be included in a single
INPUT statement, one following the other. Mnemonics can
be used with the messages to perform standard terminal
functions, such as locating the cursor, clearing the
screen, and protecting fields.

If the information in a field is not required, an asterisk
(*) can be substituted for the variable name to bypass
processing of that field. The advantages of skipping
fields are speed and a reduction of memory used by the
program.

When the system executes an INPUT statement, a message (if
one was specified) appears on the operator's terminal.

M6262A

INPUT INPUT

(cont'd) (cont'd)
The system then waits for the operator to respond. The
operator enters the response, then presses a field termi-
nator key (usually <RETURN>). Following input, the CTL

(control) system variable is set to a value determined by
the terminator key used. The following list identifies
the available field terminators and the resulting CTL

VALUES:
Control

Keys ASCITI Character (CTL) Value
(no key) NULL (hex 00) 0

CR Carriage Return 0

(with a line feed)

LF Line Feed 0
CTL-I FS (field separator) 1
CTL-II GS (group separator) 2
CTL-III RS (record separator) 3
CTL-1IV US (unit separator) 4

An INPUT ended by the SIZ= option sets the CTL value to 5.

The operator selects the key(s) to be pressed based on the
directions given, or in accordance with pre-established
operating procedures. If the programmer has directed the
possible use of any terminator other than RETURN, the

INPUT statement can be followed by a statement that se-
lects program branching, depending on the type of termi-
nator entered. The operator can be thus be given the ability
to determine the cause of processing that ensues.

When logical unit 0 is used as the input device, either by
explicit specification or by default, all entries typed at
the terminal keyboard are received by the system, and are
then immediately returned to the terminal for display or
printing.

Immediate display of data can be inhibited (e.g., to mask
the entries before display) by specifying a logical unit
other than 0. Display of the entries is then achieved by
a PRINT statement. The logical unit number used must have
been previously assigned to the terminal by means of an
OPEN statement. For example:

4-45 M6262A

INPUT
(cont'd)

Input
Verification

Numeric
Verification

M6262A

INPUT
(cont'd)

0010 LET F$=FID(0)

0020 OPEN (2)FS$S

0030 INPUT (2,ERR=00030)@(0,10),"ENTER QUANTITY SOLD-",B
0040 PRINT (0,ERR=00030)@ 0,11),B:"00000"

>RUN

ENTER QUANTITY SOLD-
ENTER "123"
000123

An attempt to enter non-numeric variables results in an
ERROR 26. This provides an easy method for verifying that
data input is numeric. For example:

0010 INPUT (0,ERR=0100)"ANY NUMBER? ",A
0020 PRINT "VALID"

0030 GOTO 0010

0100 PRINT "INVALID"

0110 GOTO 0010

>RUN

ANY NUMBER? 1
VALID

ANY NUMBER? A100
INVALID

Business BASIC provides the means to verify the maximum
and minimum sizes of strings, the values of strings, and
the maximum, minimum and number of decimal places of a

numeric within an INPUT statement, as described below
Tests for verification occur from left to right within the
parentheses.

INPUT { (file parameters)} N: ({-} range mask)...
where:
file parameters are as given in the general format.
range mask = is a literal string of digits, with or
without a decimal point, which specifies the maximum
(inclusive) limit of N
minus sign (=) = specifies (if used) that the minimum

limit of N is the negative value of the mask, inclusive;
if not specified the minimum is O.

INPUT INPUT
(cont'd) (cont'd)

Placement of the decimal point, or absence of it, speci-
fies the maximum number of fractional digits allowed.
Examples:
0010 INPUT (0, ERR=00010)A:(249.99)
The acceptable values of A are in the range of 0 through
249.99. Any value in excess of 249.99 or with more than 2
fractional digits generates an ERROR 48.
0010 INPUT (0,ERR=0010)A:(-999)
The acceptable values for A are integers in the range of
-999 through +999.
String INPUT {(file parameters)} NS: ({branchlist} {,}
Verification {LEN=Min, Max})
where:
file parameters are as given in the general format.
branchlist = one or more items whose syntax is:
string-literal=stno (e.g.,"END"=9999).
Branchlist items are separated by commas. If a true con-—
dition is found (i.e., NS$= string literal), statement ex-
ecution is transferred to the specified statement number.
Min,Max = Min and Max specify the inclusive range of legal
lengths for N$. Min must be less than or equal to Max, or
the input will result in an error 48.
If no branchlist is specified, or if the variable does not
match any literal in the branchlist, the LEN= specifica-

tion is checked. If a branchlist is specified, LEN= is
generated.

An ERROR 48 is also generated if the length of the vari-
able is not within the specified range and the variable
does not match any literal in the branchlist (or if there
is no branchlist). Otherwise, statement execution con-
tinues normally.

4-47 M6262A

INPUT INPUT
(cont'd) (cont'd)

Examples:

0010 INPUT (0,ERR=00010)"L/N/C",A$("L"=0200,
0010:"N"=0300, "C"=0400)

If A$ ="L", program control is transferred to statement
200.
If AS = "N", program control is transferred to statement
If AS = "C", program control is transferred to statement
400.

Any other value for AS$ takes the ERR branch and returns to
the INPUT statement.

0100 INPUT (0,ERR=00100)"FILE NAME",AS: (LEN=1, 6)
If the length of A$ is less than 1 or greater than 6, the
ERR branch is taken.

0050 INPUT "NEXT KEY OR CR",AS$:(""=1000, LEN=8,10)

If AS = no characters but a CTL key or CR has been enter-
ed, program control is transferred to statement 1000.

If the length of A$ is less than 8 or greater than 10, an
ERROR 48 occurs.

M6262A

INPUT RECORD INPUT RECORD

Format INPUT RECORD (fileno {,ERR=stno} {,END=stno}
{,DOM=stno} {,IND=int-expr} {,KEY=str-expr}
{,SIZ=int-expr}) {string-var}

where string-var is the string variable into which the
record is to be input.

Description The INPUT RECORD and READ RECORD directives are identical
in all respects. INPUT RECORD is usually used for input
from the terminal and READ RECORD is usually used for in-
put from files.

The INPUT RECORD directive places one record from a file
or device into a string variable. Any field terminators
are included in the record as data, and no field termin-
ator is added to the end of the record.

The SIZ= clause must be used with an INPUT RECORD command
when input is from the terminal, since a RETURN or CONTROL

bar key is treated as part of the data , rather than as a
terminator.
Example 0010 INPUT RECORD (0,ERR=00100,SI7z=5)AS

4-49 M6262A

IOLIST

Format

Description

Example

M6262A

IOLIST

IOLIST arg-list {,IOL=stno}

where the argument list is a list of data items to be
input or output in I/O statements. The list can contain
variables, constants, expressions, and mnemonics.

The IOLIST directive, available in program mode only, is
used to define a set of variables or data items that can
be referenced in input and output statements. Use of the
IOLIST directive saves both coding space and debugging
time.

The list of variables established in the IOLIST directive
is referenced by other statements using an IOL= clause.
An IOL= clause can also appear in IOLIST statements.

The IOLIST statement cannot be part of a compound state-
ment.

IOLISTS also may be used for printing of screens or report
information. The IOLIST must not be terminated with a
comma (","); for example:

0100 IOLIST @(0,10),"THIS IS A TEST"
0110 PRINT IOL=100,

An asterisk ("*") may be used in an IOLIST, provided that
IOLIST is not used for write or write record operations.

0050 OPEN (1) "AFILE"

0100 IOLIST AS,B,CS$,DS$,IOL=00010

0110 IOLIST E,FS$,GS

0120 IOLIST AS,B:"###","ABC","05678",I0L= 00110
0200 READ (2,KEY=AS$)IOL=00100

0250 WRITE (1,KEY=AS$)IOL=00120

0260 PRINT ,SB,,@Q@(0,1),I0L=00120

NOTE

IOLIST takes the same type of variable list as
that allowed on PRINT and WRITE statements. An
error 20 will be generated if input verification
items are used (see INPUT).

LET

Format

Description

Example

LET

{LET} assignment-list

where each item in the assignment list is in the form:

num-var = num-—-expr
or
str-var = str—-expr

Items are separated by a comma.

The LET directive assigns a value to a variable. The
value on the right side of the equal sign is assigned to
the variable on the left side of the equal sign. Both
sides of the equal sign must be the same data type, i.e.,
numeric or string.

The word LET is optional and need not be entered as part
of the statement. The system automatically assumes LET if
no other directive is recognizable.

More than one LET assignment can be made in one statement
by using commas between them. The LET verb occurs only at
the start of the assignment list, if at all.

0010 LET A=2

0010 B=5,Q=2,A$="VALUE"

0010 LET D1=P*Q; IF D1>10 THEN LET D1=12

4-51 M6262A

LIST

Format

Description

Examples

M6262A

LIST

LIST {(fileno {,ERR=stno} {,IND=recno} {,TBL=stno})
{stno—-a} {,} {stno-b}

where stno—-a and stno-b are the first and last statement
numbers to be listed, respectively.

The LIST directive 1is used to output a statement or series
of statements.

The selected statements(s) are read from the user program
area and are output in statement number sequence. The
listed information includes statement numbers, directives
and all parameters of each statement, including any remark
statement in the series.

The BB86 standard and BOSS/IX BASIC allow the LIST direc-
tive to be used as a statement in any program except a
public program; however, BOSS/VS BASIC allows it within a
CALL'ed program

When any statement in a list exceeds 79 characters in
length (including the statement number), the portion in
excess of 79 characters is listed on the next line. The
continued portion of the statement is then preceded by the
statement number, followed by a colon(:).

When listing to a disk file, the file must be an INDEXED
or SERIAL file with at least as many records as there are
lines in the program that are to be listed. SERIAL files
must be locked. An INDEXED file roust have a minimum re-
cord size of 80 bytes.

When listing to the terminal, output pauses at the end of
the screen, and the user is prompted to continue. <CTL-—
II> causes listing to continue without pause. <CTL-IV>
terminates the listing. Anything else displays the next
screenful.

>LIST — lists the whole program
>LIST 10 - lists statement 10 only
>LIST 10, — lists statement 10 and all following
statements.
>LIST 10,100 - lists statements 10 through 100.
>LIST ,100 - list all statements through 100.
4-52

LIST PROGRAM LIST PROGRAM

Format LIST PROGRAM "prog-ID" ,"file-ID" {,ERR=stno}
where file—-ID is the name of the Serial file which will
contain the program listing of a printer.

Description The LIST PROGRAM directive lists a BASIC program to a

Serial file.

If the serial file does not exist, LIST PROGRAM creates
it.

If the program is encrypted, an error 61 is generated.

If the name given for the program file is not a BASIC Pro-
gram file, an error 17 is generated.

If the file named exists but is not a Serial file, an
ERROR 17 is generated.

BOSS/IX requires that the existing Serial file be large
enough to hold the listing, or an ERROR 2 is generated

LIST PROGRAM cannot list from a remote Program file, but
can list to a remote Serial file.

Example LIST PROGRAM "CORNFLAKES", "CEREAL"
LIST PROGRAM "MYPROGRAM", "LP"

4-53 M6262A

LOAD

Format

Description

Example

M6262A

LOAD
LOAD "prog-ID"
The LOAD directive, available in console mode only, is
used to bring a program into memory.
When a LOAD command is issued, the following is done:

o the current program in the user area is deleted.

o all FOR/NEXT/GOSUB/SETERR/SETESC return addresses are
cleared.

o precision is set to 2.

o ERR is reset to O.

o the specified program is READ into the user area.

The LQAD'ed program can then be executed or modified. The
execution of a LOAD command has no effect on the user data

area.

On BOSS/IX, if insufficient program area is available, an
ERROR 19 (PROGRAM SIZE) is generated. The old program is

not removed until it has been determined that the new pro-
gram can be loaded. This is not a problem on BOSS/VS.

If a corrupted or miscoded program is loaded and the BASIC
runtime detects the error, the user program is cleared (as
with START), and an ERROR is returned.

Like RUN, LOAD conserves the values of the variables. For
example:

>LET A=129

>LOAD "PGM"
>PRINT A
129

If program "PGM" uses the A variable, its value is still
129, unless a BEGIN or CLEAR is executed, or "PGM" resets
it to another value.

>LOAD "INZONE"

Loads the program INZONE from the user's current working
directory into the user's program area.

4-54

LOCK

Format

Description

Example

LOCK

LOCK (fileno {,ERR=stno})

The LOCK statement prevents other users from accessing a
file. This is especially useful when a file is being up-
dated.

A LOCK'ed file is released by an UNLOCK, CLOSE or BEGIN
statement.

A SERIAL file must be locked prior to writing to it.

If other users are accessing (attempting to open) the file
when a lock is issued, an error 0 will result.

0100 LOCK (1,ERR=00200)

4-55 M6262A

MAKE PROGRAM MAKE PROGRAM

Format MAKE PROGRAM "file-ID", "prog-ID" {,ERR=stno}

where file-ID is the Serial file containing a program
listing.

Description The MAKE PROGRAM directive creates a BASIC program using
the Serial file as the source and saves it in the program
file specified.

The Serial file must be in LIST'ed or LIST PROGRAM format,

with each record having a line number.

If the Serial file does not exist, an ERROR 12 is gener-
ated. If the specified file exists but is not of type
Serial, an ERROR 17 is generated.

If the program file does not exist, MAKE PROGRAM creates
it. If the specified file exists but is not of type BASIC
Program, an error 17 is generated. The program file spec-—
ified may be an encrypted file, but it will lose its en-—
crypted status when the new program is saved.

If a syntax error is found in the Serial file, MAKE PRO-
GRAM continues and does not report the error. MAKE PRO-
GRAM will report an ERROR 21 on lines with no line number,
a zero line number, or a line number with no text. With
the exception of syntax errors, MAKE PROGRAM will stop
processing the Serial file when an error is encountered,
and nothing will be saved.

MAKE PROGRAM may reference a remote Serial file but may

not reference a remote BASIC Program file.

Example MAKE PROGRAM "COMPUTER", "EASY"

M6262A 4-56

MERGE MERGE

Format MERGE (fileno {,ERR=stno} {,IND=int-expr} {,TBL=stno})

Description The MERGE directive retrieves a program in LIST format
from an Indexed or Serial file and adds that program to
the program currently existing in a user memory. The In-
dexed or Serial file may be read from disk or any other
input device, except tape devices.

The statements of the two programs are merged together.

If both programs have a statement with the same statement
number, the one in the merging program replaces the exist-
ing one.

The addition of a statement with a statement number that
does not exist in the current user program , causes that
new statement to be inserted in the program in numerical
order, according to its statement number.

The MERGE operation is terminated following the merging of
an END statement. If no END statement is present in the
program being read, either an error 2 (END OF FILE) or an
error 21 (STATEMENT NUMBER ERROR) will be encourntered.

With one exception, MERGE cannot be used in a public pro-
gram . The exception is that BOSS/VS allows MERGE within
CALL'ed programs; but this usage is not part of the BB86

standard.

Example Follow these steps to perform a MERGE:

1. LOAD, then LIST the program to be merged ("PGM1"):
>LOAD "PGM1"

READY
>LIST
0010 REM "LOADING PGM1"
0020 INPUT AS
0130 PRINT AS
0140 GOTO 00020
1000 END

2. OPEN an Indexed file ("TRUNK"), and temporarily store
the program to be MERGED in it in LIST'ed format:

>INDEXED "TRUNK", 5,80
>OPEN (1) "TRUNK"
>LIST (1)

>END

4-57 M6262A

MERGE MERGE
(cont'd) (cont'd)

3. LOAD, then LIST the program into which "PGM1" is to be
MERGED ("PGM2") :

>LOAD "PGM2"

READY
SLIST

0010 REM "PGM2"

0015 OPEN (1) "BOX"

0030 IF LEN(AS$),3 THEN GOTO 0150
0040 READ (1,ERR=0150,KEY=AS)*
0050 PRINT "VALID"

0150 PRINT "INVALID"

0160 GOTO 0020

4. OPEN the Indexed file ("TRUNK"); then enter the MERGE
command:

>OPEN (1) "TRUNK"
>MERGE (1)

5. LIST the combined programs:

>LIST

0010 REM "LOADING PGM1"

0015 OPEN (1) "BOX"

0020 INPUT AS

0030 IF LEN(AS$),3 THEN GOTO 0150
0040 READ (1,ERR=0150,KEY=AS$>*
0050 PRINT "VALID"

0130 PRINT AS

0140 GOTO 0020

0150 PRINT "INVALID"

0160 GOTO 0020

1000 END

Statement 10 is listed in both programs, so the one in the
MERGE'ing program survives.

M6262A 4-58

MULTI MULTI

Format MULTI "file-ID", recno {,recsz}, EMT=str-expr {,ERR=stno}
where:

recsz 1is the maximum size of the record

str-expr defines the record format, as described below

Description
The MULTI directive creates a multi-keyed file.
If the maximum record size is not specified, the size is
calculated from the format string. If the size is speci-
fied, it must be at least as large as is required by the
Format string, or an ERROR 17 is generated.
Refer to Appendix B for an extended discussion of multi-
keyed files.

Format String The format string defines the record structure of the

file. Each field definition is given in the form:
field-id = istart-posd field-fmt {keyset-info}
The field-id is the name of the field. The format is the

same as for a field variable and follows the standard BB86
rules (add "#") for variable names.

The field format argument gives information about the
structure and format of the field. Fields can be fixed-
length string or numeric, variable-length string or
numeric, or composite
A fixed-length string field is given in the format:

{LEFT ! RIGHT} pad-chr int-expr
The first argument is optional, and specifies whether the
field is left or right justified. The string is left

justified unless specified otherwise.

The second argument (pad-chr) specifies the padding as

follows:
S — null padded, nulls are deleted on a read
C - space padded, spaces are deleted on a read

X - null padded, nulls are retained on a read
The integer expression "int-expr" specifies the length of

the field in bytes.

4-59
M6262A

MULTI
(cont'd)

MULTI
(cont'd)

The padding character and the integer should not be sepa-
rated by a space. The length of a fixed-length string field
is always "int-expr" bytes.

A fixed-length numeric field format provides the output
Format mask, and is given in the format:

{ UNSIGNED | SIGNED | + | — } "N" int-expr {"." {int-expr}}
{ UNSIGNED | SIGNED | + | = } "N" "." int-expr

The first argument is optional and specifies whether the
numeric data in the field is in signed or unsigned format.
Signed format (SIGNED, "+", "-") precedes the value with its
sign ("+" or "-") on output. If the value is negative and
the field was unsigned, the value written into the field is
unsigned, i.e., no negative sign. The default is unsigned.

"N" indicates only that the field is numeric.

The two integer expressions specify, respectively, the num-
ber of digits preceding the decimal point and the number of
digits following the decimal point. Either can be left un-
specified. The decimal point is always a period, even in

European format. The length of a fixed-length field is, in
bytes, the sum of the two "int-expr's" plus one (if signed)

plus one (if "." is used).

A variable—-length string field is given in the format:

"S" Mg int_expr

The integer expression gives the estimated length of the
string, and is only used for calculating the record's maxi-
mum size. The field is terminated with a linefeed charac-
ter. This additional byte should not be counted in esti-
mating the string length, since the system automatically in-
cludes it.

A variable-length numeric field is given in the format:

LN int—expr

The integer expression gives the estimated length of the
string returned by STR(n), where n is the numeric wvalue
entered into the field. The field is terminated with a
linefeed character. This additional byte should not be
counted in estimating the string length, since the system
automatically includes it.

A composite field is given in the format:
comp-subpart {+ comp-subpart}

4-60 M6262A

MULTI
(cont'd)

MULTI
(cont'd)

Each composition subpart consists of a field name and an
optional byte offset and length. For example,

FIXEDFLD# (4) : 3

describes a subpart as bytes 4, 5, and 6 of the field
FIXEDFLD#. Even the field name is optional, but describ-
ing the subpart by offset and length alone is not recom-—
mended. The rules are similar to those for the start-
position argument.

The optional start position (start-pos) specifies the
starting location of the field, overriding the default
rule that a field begins at the byte following the last
byte of the previous field (exceptt composites).

The start position specification is given either as a
field designator (name or variable) alone, a field desig-
nator followed by an integer offset, or by an integer off-
set alone. The integer offset specifies the first byte,
and optionally the number of succeeding bytes, to be used
for the field. For example, if a field FIXEDFLD# is pre-
viously defined, the start position can be specified by
any of these expressions:

FIXEDFLD#:
FIXEDFLDt (7) :
65:

The offset and byte count are allowed to extend beyond the
named field. In this case, bytes are taken from the suc-—
ceeding field.

The optional keyset information field can be any of these
four values:

PRIMARY This is the major keyset for the file. Dup-
licate entries are not allowed. A primary
keyset is required, and there may be only one

primary specified.

ALTKEY This is a secondary keyset. Duplicate key
values are not allowed.

DUPKEY This is a secondary keyset. Duplicate key
values are allowed.

NOKEY This is a non-keyed field.
If no keyset information is specified, the field is

defined as NOKEY.

4-61 M6262A

MULTI MULTI
(cont'd) (cont'd)

A special field name, FILLER, is provided for specifying
an unnamed field to reserve space in the data record. The
format is:

FILLER = {start-pos} length
Example 0100 DEPFMTS$ = "DEPTNAME# = S12 ALTKEY
0100: DEPTNUM# = N5 PRIMARY
0100 DRCTRNUM# = N6
0100 BUDGET# = N8.4
0100 EXPENSE# = N8.4"

0110 MULTI "DEPTFILE",100,FMT=DEPTFMTS$

An extended description of this example and others is con-
tained in Appendix B.

M6262A 4-62

NEXT NEXT

Format NEXT num-variable

where num-variable is the variable to be incremented or
decremented.

Description The NEXT directive is used with the FOR statement to
create conditional looping within a program

Refer to the FOR/NEXT directive in this section.

4-63 M6262A

ON/GOSUB ON/GOSUB

Format ON int-expr GOSUB stno-list

where:
int-expr is a numeric variable or expression that

evaluates as an integer to determine the next
statement number to be executed.

stno-1list is a list of statement numbers, separated by
commas, specifying the line number to execute for
each value of integer-expr.

Description The ON/GOSUB directive functions the same as the ON/GOTO
directive but performs a GOSUB (refer to GOSUB for addi-
tional information).

The ON/GOSUB directive is used to transfer program control
to a specified statement number beginning execution of a
subroutine. The statement number selected depends upon
the value of the integer expression and the relative posi-
tions of the statement numbers after the GOSUB.

The first statement number is executed when the value of
the expression is less than or equal to 0. The second

statement number is executed when the value of the expres-
sion is 1, the third when the value is 2, the fourth when
the value is 3, and so on. The last statement number is
used for the next value of the expression and all values
greater than it. For instance, if the fourth statement
number is the last in the list, then it is executed when
the integer expression evaluates to 3 or greater.

There is no limit to the number of statement numbers
permitted in the list other than restrictions due to
memory.
Example 0100 ON X GOSUB 0200,0300,0400,0500
If X<=0, the next statement executed is 200.
If X=1, the next statement executed is 300.

If X=2, the next statement executed is 400.

If X>=3, the next statement executed is 500.

4-64
M6262A

ON/GOSUB
(cont 'd)

CN/GOSUB
(cont 'd)

The following example shows how ON/GOSUB nay be used in
conjunction with the SETERR directive and the ERR system
variable. The SETERR directive transfers program control
to a specified statement when an otherwise untrapped error
occurs. That statement then determines where the program
branches based on which error occurred. The particular
error is identified by the ERR variable, which is set at
each occurrence.

0200 SETERR 9000

9000 ON ERR(12,14,17) GOSUB 09100, 09200, 09300, 09400

When an error causes the program to branch to statement
9000, statement 9000 transfers control as follows:

ERR NEXT STATEMENT
12 9200
14 9300
17 9400
OTHER 9100

4-65 M6262A

ON/GOTO ON/GOTO

Format ON int-expr GOTO stno-list
where:
int-expr = a numeric variable or expression that evaluates

as an integer to determine the next statement number to be
executed.

stno-list = a list of statement numbers, separated by com-
mas, specifying the line number to execute for each value
of integer-expr

Description The ON/GOTO directive functions the same as the ON/GOSUB
directive but performs a GOTO (refer to GOTO for addi-
tional information).

The ON/GOTO directive is used to transfer program control
to a specified statement number. The statement number
selected depends upon the value of the integer expression
and the relative positions of the statement numbers after
the GOTO.

The first statement number is executed next when the value
of the expression is less than or equal to 0. The second
statement number is executed next when the value of the
expression is 1, the third when the value is 2, the fourth
if the value is 3, and so on. The last statement number
is used for the next value of the expression and all val-
ues greater than it. For instance, if the fourth state-
ment number is the last in the list, it is executed when
the integer expression evaluates to 3 or greater.

There is no limit to the number of statement numbers per-
mitted in the list other than restrictions due to computer
memory.

Example 0100 ON X GOTO 0200,0300,0400,0500

If X<=0, the next statement executed is 200.

If X=1, the next statement executed is 300.

If X=2, the next statement executed is 400.
If X>=3, the next statement executed is 500.
The following example shows how ON/GOTO nay be used in

conjunction with the SETERR directive and the ERR system
variable.

M6262A 4-66

ON/GOTO
(cont'd)

ON/GOTO
(cont'd)

The SETERR directive transfers program control to a speci-
fied statement when an otherwise untrapped error occurs.
That statement then determines where the program branches
based on which error occurred. The particular error is
identified by the ERR variable, which is set at each oc-
currence.

0200 SETERR 9000

9000 ON ERR(12,14,17) GOTO 09100, 09200, 09300, 09400

When an error causes the program to branch to statement
9000, statement 9000 transfers control as follows:

ERR NEXT STATEMENT
12 9200
14 9300
17 9400
OTHER 9100

4-67 M6262A

OPEN

Format

Description

Examples

M6262A

OPEN

OPEN {INPUT} (fileno f,ERR=stno} {,SEQ=int-expr{)
"file/device-ID"

where the integer expression following SEQ= specifies the
sequence number of the file on tape.
The OPEN statement is used for two purposes:

1. To permit a user to access a specified disk data file
for subsequent input/output operations;

2. To allow a user to reserve a specified input/output
device for his/her exclusive use.

Each user may access (OPEN) a maximum of 64 files and/or
devices (numbered 0 - 63) at any given time. The terminal
running the user program is always available for opening.

Logical unit 0 is not available for opening.

Additional files/devices can be opened by closing those
files/devices that are no longer needed.

If the INPUT option is used, the file or device is opened
for input only, and cannot be written to . An attempt to

write to a file/device opened with OPEN INPUT generates an
ERROR 18.

The SEQ= option allows opening files on tape by specifying
the sequence number of the desired file on the tape.

The "file/device-id" string expression will automatically
be translated to the actual file/device-id when file name
translation is in effect (refer to SETTRANS) .

0010 OPEN (1) "ADOOR"

0020 OPEN INPUT (2,ERR=00050) "DONTCHANGE"

0030 OPEN (7)"LP"

0040 OPEN (3,SEQ=4) "RO"

M6262A

PACK

Format

Description

Examples

PACK

PACK U fileno {,RETAIN} {,ERR=stno}) {var-list}

The PACK directive modifies the contents of the retain
buffer with the data in the variable list.

If the RETAIN clause is used, the record currently in the
retain buffer is modified.

If the RETAIN clause is not used, the record currently in
the retain buffer is replaced. Any fields in the record
not specified are filled with nulls.
WRITE with the RETAIN option is used to write the contents
of the retain buffer.
1000 PACK (1)

Clears the retain buffer for logical unit 1.

1500 PACK(1l,RETAIN)AS,C

Merges AS$S and C with the current contents of the retain
buffer.

PRECISION

Format

Description

Examples

M6262A

PRECISION

PRECISION int-expr
where the int-expr has an integer value between 0 and 14.

The PRECISION directive is used to change the number of
places to the right of the decimal point that will be used
in calculations and for display.

PRECISION is always reset to 2 when a BEGIN, CLEAR, RESET,
END, STOP, RUN or LOAD statement is executed.

0010 BEGIN

0020 LET A=.55555

0030 FOR 1=0 TO 5

0040 PRECISION I;PRINT A,;NEXT I

>RUN
1

.6

.56
.556
.5556
.55555

Statement 20 involves no computation; therefore, no round-
ing takes place . 1If, however, statement 20 above is re-
placed with the following:

0020 LET A=0+.55555

then the stored value of A is 0.56, and the printout
reflects the rounded value:

>RUN
1

.56

.56

.56

.56
0100 REM "CODE 3-6"
0200 PRECISION 2
0220 LET A=.5,B=.01, C=4
0230 LET D=A*B*C,E=B*C*A
0240 PRINT D,E

>RUN
.04 .02

PRINT PRINT

Format PRINT {(fileno {,RETAIN} {,END=stno} {,ERR=stno}
{, IND=int-expr} {,KEY=str-expr} {,DOM=stno}
{, TBL=stno})} {,mnemonic} {,var-list} {,IOL=stno} {,}

where:
mnemonic = a cursor/print head positioning mnemonic
var—-list = one or more numeric or string expressions.

NOTE

A comma is inserted before IOL= only when IOL=
follows an expression list or a mnemonic.

Description The PRINT directive is used to PRINT to a file or device.
PRINT does not add a character to either the beginning or
end of string fields. PRINT precedes a numeric field with
a blank. PRINT appends a linefeed CHR(IO) to the last
field.

This distinguishes PRINT from WRITE, which does not begin
a numeric field with a blank and which appends a linefeed
after every field (as a field marker) but does not append
a final linefeed after all fields have been written.

A comma (,) at the end of all items suppresses the
terminating line feed character.

The PRINT statement is normally used to output data to
terminals and printers. In this capacity the PRINT state-—
ment makes full use of positioning expressions, as re-—
quired, to produce printed reports and precisely arranged
and edited displays.

The PRINT statement can include any number of parameters
defining data items to be printed. If the expression for
any data item is not preceded by a positioning expression,
printing (or display) occurs immediately following the
last character output.

The RETAIN clause used with a print to a file that is not
a multi-keyed file causes the retain buffer, (stripped of
a trailing linefeed, if any) to be attached to the normal
results of the PRINT. The RETAIN clause used with a print
to a multi-keyed file is treated as a WRITE.

Example 0130 PRINT (3,ERR=0340)@(5),AS$,Q@(35),B:X$

4-71 M5262A

PRINT RECORD

Format

Description

Example

M6262A

PRINT RECORD

PRINT RECORD (fileno f,END=stno} {,ERR=stno}
{,SIZ=int-expr} {,DOM=stno} {,IND=int-expr}
{,KEY=str-expr} {,TBL=stno}) {str-variable}

The PRINT RECORD statement provides a means of writing a
full record to a file without the requirement of specify-
ing all of the variables which comprise the record. All
field marks are transferred as data and one additional
terminator is supplied. If the length of the variable is
shorter than the defined record size, the rest of the
record is filled with hexadecimal zeros.

PRINT RECORD works like a WRITE RECORD, except that PRINT
RECORD appends a single linefeed character.

0130 PRINT RECORD (3,ERR=00340)AS

PSAVE

Format

Description

Example

PSAVE

PSAVE "prog-ID" {,ERR=stno}

The PSAVE directive performs a protected SAVE, that is, it
saves the program in user memory in encrypted form to the
specified "program-id" on disk.

A PSAVE'd program will run the same as an unprotected pro-
gram . Any attempt to LIST, SAVE, EDIT, DELETE or MERGE
statements generates an ERROR 18.

The program name must be supplied to PSAVE. If the file
already exists and is large enough, the system saves the
program. If the program exists but is not large enough,
PSAVE automatically resizes it. 1In this case the original
program is not deleted until it has been successfully
saved.

The BB86 standard and BOSS/IX specify that PSAVE cannot be
used in public programs; however, it is allowed there on
BOSS/VS systems? CAUTION: PSAVE on BOSS/VS actually re-
moves any reference to the original source (listed version
of the program). Once PSAVE'ed, a program's souurce cannot
be recovered. Hence care should be taken to ensure that

a source copy of the program is retained.

PSAVE cannot create or write a remote file.

>LOAD "ORDINARY"
>PSAVE "ENCRYPTED"

4-73 M6262A

QUIT

Format

Description

Examples

M6262A

QUIT
QUIT
The QUIT directive closes files and then releases the
task's memory. In most cases, QUIT'ing returns you to the

system command level.

QUIT will take you back one level. 1If you came from the
menu system, you go back there. If you came from another
BASIC, you go back to that BASIC: in BASIC, type !BASIC
and then, at the prompt, type QUIT; this takes you back to
the other BASIC.

0010 QUIT
>QUIT

!BASIC
>!BASIC
>QUIT

>QUIT
!

Format

Description

Direct File

READ f(fileno {,RETAIN } {,END=stno} {,ERR=stno}
{, IND=int-expr} {,KEY=str-expr} {,TBL=stno}
{,SIZz=int-expr} {,DOM=stno} {,TIM=time-expr})}
{,mnemonic} {variable-list} {,IOL=stno}

NOTE

A comma is inserted before IOL= only when both
IOL= and a variable list, or multiple IOL=
entries, or positioning mnemonics are used.

The READ directive is used to read data from a file or
device. It is identical to the INPUT directive, except
that READ is usually used for input from files while INPUT
is used for input from the terminal.

The RETAIN clause places the data Jjust read into the re-
tain buffer for the logical unit. This may be used in
later UNPACK, PACK and WRITE directives.

The fields are read into their respective variables in the
READ statement. If a field contains non-numeric informa-—
tion, and the corresponding variable is numeric, an ERROR
26 is generated. However, a numeric field can be read
into a string variable.

If the information in a field is not required, an asterisk
(*) can be substituted for the variable name to bypass
processing of that field. The advantages of skipping
fields are speed and a reduction of memory used by the
program.

For non-terminal devices, string constants and mnemonic
constants are not allowed.

Specific information for different file types is given
below

A Direct file can be READ either with or without the KEY=
option. If a key is not specified, the directive reads
the record with the next higher key value. When the READ
operation is complete, the "next key" pointer is updated ,
i.e., reading a Direct file without specifying a key
causes the records to be retrieved in keysorted order.

If a record is READ with a key and the key is not found,

an error occurs, and the key pointer is updated to point
to the next higher key after the key that was not found.

4-75 M62

62A

READ READ
(cont'd) (cont'd)

If it is not desirable for a key pointer to be updated,
FIND or EXTRACT should be used instead of READ. (Refer to
Appendix B for how READ may be used with MULTI-KEY files.)

Examples Reading and writing a Direct file.
0010 REM "PROGRAM 1 —-- UPDATE PRICES"
0020 BEGIN

0030 OPEN (1)"AA"

0040 INPUT (0,ERR=00040)"PRODUCT NUMBER OR END:",AS:<"
0040:END"=01000, LEN=1,5)

0050 EXTRACT (1,ERR=00500,KEY=AS)*,A,B

0060 PRINT "OLD PRICE IS ",B

0070 INPUT (0,ERR=00070)"ENTER NEW PRICE ",B: (99999.99)
0080 WRITE (1)AS,A,B

0090 GOTO 00040

0500 IF ERR<>11 THEN GOTO 00600

0510 PRINT "INVALID PRODUCT ENTERED. PLEASE RE-ENTER"
0520 GOTO 00040

0600 IF ERR<>0 THEN GOTO 00700

0610 PRINT "RECORD FOR THIS PRODUCT 1IN USE. WAITING"
0620 GOTO 00050

0700 PRINT "ERROR: ",ERR:"0Q0", "OCCURRED ON READ"

0710 STOP

1000 PRINT "END OF JOB"

1010 STOP

16000 END

0010 REM "PROGRAM 2 ? READ DIRECT FILE IN SEQUENCE AND
0010:PRINT PRICE"

0020 BEGIN

0030 OPEN (1)"AA"

0040 READ (1,END=01000)AS,*,B

0050 PRINT "PRODUCT-",AS," PRICE: ",B

0060 GOTO 00040

1000 PRINT "ALL PRODUCTS AND PRICES PRINTED"

1010 STOP

9999 END

Sort File The READ statement for Sort files cannot specify any data
to be read, since it is a key-only file.

Examples The following example defines a Sort file of 50 keys, each
of which contains 10 characters, then writes 50 keys to
the file, reads the Sort file sequentially, and prints
each key:

M6262A 4-76

READ
(cont'd)

READ
(cont'd)

0010 REM "CREATE SORT FILE"

0020 SORT "SORT", 10,50,0,0

0030 OPEN (1) "SORT"

0040 FOR 1=1 TO 50

0050 WRITE (1,KEY=STR(I:"00000")+"AAAAA")

0060 NEXT I

0070 REM "READ SORT FILE SEQUENTIALLY AND PRINT KEYS"

0080 READ (1,KEY="",DOM=120)
0090 LET KS$=KEY (1,END=00200)
0100 REM " K$ CONTAINS THE KEY OF SORT FILE"

0120 PRINT "KEY=",6KS$

0130 READ (1)

0140 REM "READ IS NECESSARY TO ADVANCE TO NEXT KEY"
0150 GOTO 00120

0160 REM "END OF FILE"

0170 STOP

One use of a Sort file is to effect different sequences of a
single Direct master file. 1In the following example, the
Direct file "MASTER" is a customer master file in customer
number sequence (customer number is a 5-digit number).

Each record in the master file contains 5 fields: Customer
Number, Customer Name, Address, Amount Due, and Amount Paid.
A SORT file "NAME" has been created with a key consisting of
10 characters: the first 5 characters of both the customer
name and the customer number.

This sample program prints an alphabetic listing of all the
customers in the master file which have a non-zero amount due:

0010 OPEN (1)"MASTER"
0020 OPEN (2)"NAME"
0030 OPEN (7)"LP"

0040 REM " K$ CONTAINS THE FIRST 5 CHARACTERS OF CUST NAME
0050 REM " PLUS THE CUSTOMER CODE IN POSITION 6-10

0060 LET KS$=KEY (2,END=01000)

0070 REM " CUSTOMER CODE IS THE KEY TO FILE "MASTER"

0080 READ (1,KEY=KS$ (6,5)>AS$,BS,*,D,*

0090 REM " THE VARIABLE D CONTAINS THE AMOUNT DUE

0100 REM " 1IF NOT ZERO, THE CUSTOMER WILL BE LISTED

0110 IF DO O THEN PRINT (7)"CUST CODE",AS$,"NAME: ",BS,"AMT:",D

0120 READ (2)
0130 GOTO 00040
9999 END

4-77 M6262A

READ READ
(cont'd) (cont'd)

Indexed and Serial Files and Peripheral Devices

READ statements for Indexed or Serial files cannot include a
DOM= or KEY= option. The IND= option can be used to select
specific records.

Example 0010 REM "PROGRAM TO PRINT LABELS
0020 BEGIN
0030 OPEN (1)"ADDRESS"
0040 OPEN (7)"LP"
0050 READ (1,END=00100)AS$,BS,CS$,D$
0060 PRINT (7)'FF',AS
0070 PRINT (7)BS
0080 IF LEN(C$)>0 THEN PRINT (7)C$
0090 PRINT (7)DS$
0100 GOTO 00050
0110 CLOSE (1)
0120 CLOSE (7)
0130 END

M6262A 4-78

READ RECORD

Format

Description

Example

READ RECORD

READ RECORD (fileno {,DOM=stno} {,END=stno} {,ERR=stno}
{, IND=int-expr} {,KEY=str-expr} {,TBL=stno} {,TIM=time}
{,SIZ=int-expr}) str-variable

The READ RECORD directive provides a method of reading a
full record from a file or device. All field marks in the
record are transferred as data . When the size option is
included, only the size specified is transferred.

When READ RECORD is done from the half-inch tape device
RO, the string variable must be previously allocated to be
at least as big as the record to be read from the tape.
The reason for this is that the READ RECORD is done di-
rectly from the tape into the string variable. This im-
proves the performance of tape reads and makes it possible
for the tape to stream.

Refer to INPUT RECORD for additional information.

0100 DIM AS(4096)
0110 READ RECORD (1,END=00900)AS

4-79 M6262A

RELEASE RELEASE

Format RELEASE {"task-id"}
where task-id is the terminal or ghost task identifier.

Description The RELEASE directive CLOSE'S all files opened by a task,
and releases the task's memory. RELEASE can release any
Ghost task or the process executing the RELEASE (i.e.,
itself). RELEASE without a task ID logs the user off of
the system.
When a task releases itself, any Jjob in process is ter-
minated and the screen is cleared. The terminal is then
inactive until ESCAPE is pressed, or it is opened by an-
other task.

Examples >RELEASE
>RELEASE "G1"

>!RELEASE *

>RELEASE "T2"

M6262A 4-80

Format

Description

Example

REM {{"}str-expr{"}}

where the string expression is a comment.

A comment can be inserted at any point in a program by
using the REM statement. Quotation marks are recommended
in cases of multiple REM's in one statement, and, for

EOSS/IX, to ensure that any blanks within a remark are
retained.

0010 REM "PROGRAM TO GENERATE PAPERWORK"

4-81 M6262A

REMOVE

Format

Description

Example

M6262A

REMOVE

REMOVE (fileno {,KEY=atr-expr} {,DOM=stno} {,ERR=stno}
{,END=stno})

The REMOVE directive is used to delete the key of an ex-
isting record in a keyed file. Deletion of a key removes
all references to the key and its associated data . The
associated record is filled with hexadecimal zeros (00).

The system updates the key pointer to point to the key
following the key that has just been removed.

The KEY= parameter is optional when an EXTRACT is perform-

ed on the record to be removed. If present, the parameter
refers to the primary keyset of a multi-keyed file, or the
key of a direct file. If absent, the record that was pre-

viously EXTRACT'ed is removed (but only if no other I/O
operations occur on that logical unit between the EXTRACT
and the REMOVE) .

0100 REMOVE (1,KEY=K$,DOM=9000)

4-82

RENAME

Format

Description

Example

RENAME

RENAME "old-file—-ID", "new—-file-ID" i,ERR=stno{

The RENAME command changes the name of a file.

If the file to be renamed does not exist, an ERROR 12 is
generated.

If the new file name is already the name of a file, an
ERROR 12 is generated.

After RENAME has successfully executed, the old file name
no longer exists.

RENAME cannot be used to rename files across filesystem
(BOSS/IX) or family (BOSS/VS) boundaries. Attempting to

do so generates an error.

RENAME cannot reference remote files.

>RENAME "OLDFILE", "NEWFILE"

4-83 M6262A

RESET

Format

Description

Example

M6262A

RESET

RESET

The RESET directive performs a BASIC system reset that af-
fects only the task that issued the statement.

RESET resets the ERR and CTL system variables (to zero)
and any GOSUB and FOR/NEXT loops that have not been fully
executed. The RESET statement also re-establishes the

arithmetic mode at PRECISION 2 and any statement numbers
active for SETESC or SETERR are cleared.

Execution of the RESET statement does not clear the user
data area, close and open file or devices, or reset the
program execution pointer, which identifies the next
statement to be executed.

>RESET
>0100 RESET

4-84

RETRY RETRY

Format RETRY

Description The RETRY directive causes the transfer of program control
to the statement where the last error occurred.

RETRY must be preceded by an error branch in a program or
an ERROR 27 occurs. RETRY cannot be executed unless an
error occurred previous to the RETRY.

The RETRY branch address is cleared by a START, LOAD or
RUN (with program name specified), and BEGIN, CLEAR and
RESET directives.

When a SETERR statement is branched into, it normally will
be reset to 0 (to keep errors within a program 's error

handling from causing infinite loops); RETRY restores
SETERR to its pre-error value.

Example 0010 REM "PROGRAM TO INPUT NEW CUSTOMERS"
0020 BEGIN
0030 OPEN (1)"MASTER"
0040 LET PS$="00000"
0050 INPUT (0,ERR=0210)'CS'," CUSTOMER NUMBER (CR TO END)
0050:",N: (99999)
0060 IF N=0 THEN STOP
0070 LET N$=STR (N:PS$)
0080 FIND (1,DOM=0120,KEY=NS)
0090 INPUT (0,ERR=0090)@(0,22),'RB', "CUSTOMER ON FILE
0090: (DEL TO DELETE , CR TO CONTINUE :,T$: ("DEL" =0100,""
0090:=0050)
0100 REMOVE (1,KEY=NS$)
0110 GOTO 0050
0120 SETERR 0210
0130 INPUT @(0,1),"ADDRESS",AS: (LEN=0, 30)
0140 INPUT @(0,2),"CITY",CS: (LEN=0,15)
0150 INPUT @ (0, 3),"STATE", SS$:("CA"=00160,"AZ"=00160,
0150:"OR"=00160)
0160 INPUT @(0,4),"ZIP",Z:(99999)
0170 INPUT @(0,5),"BALANCE",B: (-99999.99)
0180 SETERR 0
0190 WRITE (1,KEY=NS$,ERR=8000)NS$,AS$,CS,S$,2,B
0200 GOTO 0050
0210 INPUT (0,ERR=0210)@(0,22),'RB',"INVALID (CR TO
0210:CONTINUE) ",TS$: (""=0220)
0220 RETRY

8000 REM "ERROR HANDLING ROUTINE"

4-85 M6262A

RETURN

Format

Description

Example

M6262A

RETURN

RETURN

The RETURN directive is used to terminate a GOSUB, SETESC,
or SETCTL routine. It returns program control to the
statement following the GOSUB and the SETCTL or, in the
case of SETESC, to where it left off.

RETURN can be used only in program mode.

0300 GOSUB 0950
0400 LET ZS$="ZFRANC"

0950 LET A=50; LET B=A*C/2; PRINT B
0960 RETURN

RUN

Format

Description

Examples

RUN

RUN {"prog-ID"}

The RUN directive is used to execute a program . If no
program ID is specified, the program currently in user
memory is run. If a program ID 1is specified, the program
is loaded and then run.

When the program ID is specified, RUN will LOAD the pro-
gram, clear FOR/NEXT, GOSUB, SETERR and SETESC addresses,
and reset PRECISION to 2. Program execution begins at the
lowest line number.

In general, RUN begins program execution at the line num-
ber currently selected by the program line pointer. For a
newly loaded program, this is the lowest line number. If
a program is interrupted or in some other way the program
line pointer is pointing at some other program line, RUN
begins execution at this point. This is usually caused by
execution of a GOTO in console mode or previous interrup-
tion of program execution by an ESCAPE or some other in-—
terruption other than an END or STOP.

Programmed overlay of segmented programs can be ac-—
complished by the use of the RUN statement as part of a

program
0400 RUN "PRGM"

All previously existing program statements in the program
area are deleted, and the program statement pointer is set
to one. Existing data in the data area is not changed and
is usable by the incoming program

The program area is not cleared until it has been
determined that the specified program can be LOAD'ed.

>RUN

0400 RUN "AMOK"

4-87 M6262A

SAVE

Format

Description

Examples

M6262A

SAVE

SAVE {prog-ID} {,int-expr}

where the integer expression specifies the program size in
bytes <maximum= 32,767 on BOSS/IX and 65,536 on BOSS/VS).

The SAVE directive is used to copy a program from user
memory to a Program file on disk.

Generally, SAVE is used with no arguments, or with only
the file ID argument. When no program ID is specified,
the program is SAVE'd into the currently LOAD'ed program
file.

If SAVE is executed with only the file ID and the program
file does not exist already, the file is created.

If the program file exists but is not large enough, the
file is enlarged. The original file is not deleted until

the enlarged program has been successfully saved.

BOSS/IX and the BB86 standard do not permit SAVE to be
used in a public program (BOSS/VS does).

SAVE cannot create or write a remote file.

>SAVE "STAMPS"

SERIAL

Format

Description

Examples

SERIAL

SERIAL "file-ID", av-recno, av-recsz {,ERR=stno}

where:

av—-recno the average number of records in the file

av-recsz = the average size, in bytes, of each record

in the file

SERIAL creates a Serial file.

The average record size and average number of records are
multiplied to obtain the number of bytes required for the
file.

Part of the space allocated is used for system overhead.
The amount of overhead is system dependent, and should be

allowed for when defining the file.

Rules for using Serial files are as follows:

1. The maximum record size for a serial file is 32,767
bytes.

2. The file must be locked in order to WRITE to it;
otherwise, an ERROR 13, ILLEGAL FILE USE/ACCESS,
results.

3. Indices can be used to access records in a Serial file

as they are in an INDEXED file. Record-to-record
movement of the index can be forward or backward

(though backward movement might be slightly less

efficient).

The SERIAL directive can also be used with a complete ac-
ceptable, but the two cannot be mixed.

>SERIAL "NAME", 100,80

Defines a serial file called "NAME" with an average number
of records equal to 100 and average record size equal to
80, in the user's working directory.

Note that since space is determined by multiplying the
average number of records and the average record size, the

same amount of space would be allocated by:

>SERIAL "NAME", 50,160

4-89 M6262A

SETCTL

Format

Description

Example

M6262A

SETCTL

SETCTL stno

The SETCTL directive is used to cause branching which the
operator enters <CTL>+<Y> (holding down the CTL key while
pressing then releasing Y). When this combination is
entered, control is transferred to the statement number
set by the currently active SETCTL statement. If there is
no SETCTL in effect, the sequence is treated like other
keystroke combinations, and no special action is taken.

The branch defined by SETCTL is like a GOSUB. Processing
continues in the subroutine until a RETURN statement is
encountered. Control is then transferred to the statement
following the point of execution when <CTRL>+<Y> was
pressed.

SETCTL has an error-stacking feature which preserves the
ERR value immediately before <CTIRL>+<Y> was pressed. Even
though the value of ERR may change during the SETCTL sub-
routine, the value is restored when control RETURN'S to
the main program.

0010 SETERR 0100;SETCTL 0200

0020 PRINT 1/0

0100 PRINT "AFTER TAKING SETERR BRANCH, ERR: ",ERR

0110 INPUT "HIT <CTRL>+<Y> THE FIRST TIME, HIT RETURN THE
0110:SECOND TIME ",AS

0120 PRINT "AFTER RETURN FROM SETCTL, ERR: ",ERR
0130 STOP

0200 PRINT 'LF', "IN SETCTL, ERR: ",ERR

0210 OPEN(1,ERR=0220) "DKFLJ"

0220 PRINT "AFTER OPEN, ERR: ",ERR

0230 RETURN

>RUN

AFTER TAKING SETERR BRANCH, ERR: 40

HIT <CTRL>+<Y> THE FIRST TIME, HIT RETURN THE SECOND TIME
IN SETCTL , ERR:126

AFTER OPEN, ERR: 12

HIT <CTRL>+<Y> THE FIRST TIME, HIT RETURN THE SECOND TIME
AFTER RETURN FROM SETCTL, ERR: 40

READY
>

SETDAY

Format

Description

Example

SETDAY

SETDAY str-expr

where the string expression is an 8-character string
specifying the date.

The
the

The
The

SETDAY directive is used to set the value returned by
system variable DAY.

argument must be a string, eight characters in length.
format most commonly used is "MM/DD/YY", though

alternate formats may be specified by the system ad-
ministrator.

An improper length results in an error 46, and an improper
date returns an error 17.

SETDAY "03/31/87"

4-91 M6262A

SETERR

Format

Description

Example

M6262A

SETERR

SETERR stno

The SETERR directive is used to branch to a general error
routine. RETRY can then be used to return to the state-
ment at which the error occurred for re-execution. This
greatly simplifies the code required to handle errors.

The following rules apply to SETERR:

o If an error occurs within a statement that has no ex-
plicit error exit (an ERR=, DOM=, END= clauses take
precedence over a SETERR), a branch occurs (if a SETERR
is in effect) to the specified statement. The
specified statement can be the beginning of a routine
for handling the error.

o The routine can be terminated with a RETRY statement,
in which case program control returns to the statement
where the error occurred.

o SETERR is cleared by a RUN, LOAD, RESET, BEGIN, CLEAR,
END or SETERR O.

o When the system takes the SETERR or ERR= branch, it
automatically performs a SETERR 0 and saves the state-
ment number to RETRY (unless the error occurred on an
ERR= branch and returns to the same statement where the
error occurred). This allows limited error branching
within an error routine without losing the original
RETRY address. When the RETRY statement is executed,
the SETERR is restored to its original value. This
design prevents an error within an error routine caus-
ing an infinite loop.

o If an ERR= option (that does not branch to itself) is
executed within an error routine, the RETRY address is
set to that statement (losing the original RETRY
address) and the SETERR 1is not reset.

o If a SETERR is used for handling errors in a routine, a
SETERR 0 should be executed after completion of the
routine, unless a RETRY is performed. This protects
future errors from falling under control of the first
SETERR.

0010 SETERR 0100

SETESC

Format

Description

Example

SETESC

SETESC stno

The SETESC directive is used to prevent an operator from
escaping out of a program or to allow normal termination
of a program to occur.

SETESC causes the program to branch if ESCAPE is pressed.
The system executes a GOSUB to the line number specified
in the SETESC statement. Following a RETURN, the system
resumes processing at the point.from which the SETESC
branch was taken.

The SETESC branch does not occur when a statement contains
an ESCAPE directive.

SETESC has an error-stacking feature which preserves the
ERR value immediately before <ESCAPE> was pressed. Even
though the value of ERR may change during the SETESC sub-
routine, the value is restored when control RETURN'S to
the main program. (Refer to SETCTL for a closely related
example.)

0010 BEGIN

0050 SETESC 9000

0059 REM "ESCAPE KEY WILL BE PRESSED DURING EXECUTION
0059:0F 60 OR 70

0060 LET A=A+1,B=B+1,C=C+1l
0065 IF A>100 STOP

0070 GOTO 0060

9000 REM

9001 REM "ESCAPE ROUTINE"

9002 REM

9003 PRINT "YOU CANNOT ESCAPE"
9004 RETURN

4-93 M6262A

SETFIELD SETFIELD

Format SETFIELD file-ID, FMT=str-expr f,MSG=str-expr}
{,ERR=stno}
Description The SETFIELD directive changes the keyset type for a field

in a multi-keyed file.
The file cannot be open when the change is made.

The PRIMARY field may not be changed, and no other field
may be declared PRIMARY by SETFIELD

The FMT clause specifies the field name, followed by "=",
and then by the new keyset type for the field, either ALT-
KEY, DUPKEY, or NOKEY.

There is a possibility of generating an error when chang-
ing a field from DUPKEY to ALTKEY, in the case that there
was a duplicate key in the field.

The optional MSG= clause displays a message at the cursor
position followed by a running percentage complete value.

The final percentage displayed is 100%. The message may
contain positioning mnemonics. If the MSG= clause 1is not

specified, no percentage complete is displayed.

Example 1300 SETFIELD "DEPTFILE", FMT="DEPTNAME#=DUPKEY",
1300:MSG=@ (65, 20)+"Progress: "

See Appendix B for further examples of the use of SETFIELD
and multi-key files.

M6262A 4-94

SETTTME

Format

Description

Example

SETTIME

SETTIME num-expr
where numeric-expr has a value between 0.00 and 24.99
representing the time (e.g., 13.50 = 1:30 p.m.). The fol-
lowing formula can be used to determine the proper format:
H + (M/60) + (S/3600)
where H = Hours, M = Minutes and S = Seconds.
SETTIME is used to change the value of the TIM system var-—

iable. The TIM variable is set to 0 whenever the system
is loaded.

0010 REM "PROGRAM TO SET TIME AND DAY"

0020 BEGIN
0030 INPUT (0,ERR=0030)"HOUR = ",H: (23)
0040 INPUT <0,ERR=0040)"MINUTES = ",M: (59)

0050 INPUT (0,ERR=0050)"SECONDS
0060 PRECISION 4

Il
=
n
S
Ne]

0070 SETTIME H+M/60+S/3600

0080 INPUT (0,ERR=0080)"MONTH= ",M: (12)
0090 IF M<1 THEN GOTO 0080

0100 INPUT <0,ERR=0100)"DAY = ",D: (3D
0110 IF D<1 THEN GOTO 0100
0120 IF POS(STR(M:"00")="04060911",2)0 0 AND D>30 THEN

0120:GOTO 0100

0130 IF M=2 AND D>29 THEN GOTO 0100

0140 INPUT <0,ERR=0140)"YEAR = ",Y:(99)

0150 IF Y<1 THEN GOTO 0140

0160 IF FPT(Y/4)0 0 AND M=2 AND D>28 THEN GOTO 0100
0170 SETDAY STR(M:"00")+"/"+STR(D:"00")+"/"+STR(Y:"00")
0180 REM "PRINT THE DATE AND TIME"

0190 PRECISION 4

0200 LET T=TIM, H=INT(T), S=INT(FPT(T)*3600),M=INT(S/60),
0200:5=5-M*60

0210 PRINT "DATE IS",DAY

0220 PRINT "TIME IS",H:"00",":",M:"00",":" ,S:"00"

0230 STOP

4-95 M6262A

SETTRACE SEITRACE

Format SETTRACE { (fileno)}

Description The SETTRACE directive initiates the listing of statements
as they are executed. SETTRACE is especially useful when
debugging a program that appears to be branching in an un-
foreseen or undesirable manner. The resulting listing
shows the exact sequence in which program statements are
being executed.

The SETTRACE listing can be sent to a file or printer by
opening a channel to the desired device and specifying the
channel number. 1In all cases, the SETTRACE listing is in
LIST format.

SETTRACE can be used as a statement within the program at
selected points until the program is debugged. SETTRACE
can also be entered in console mode to begin the listing

of executed statements. In either case, the listing con-
tinues until terminated by execution of an ENDTRACE, END
or STOP.

If the file or device specified has not been opened or is
not ready, an error results on the SETTRACE statement.
Also, if the device being used to trace the execution
should fail, an error occurs and the statement being ex-
ecuted is displayed as the statement in error. The state-
ment listed may not be in error.

In BB86, there is no difference between the display of
traced statements which come from a main program and
statements which come from a CALL'ed program

Example 0010 FOR 1=1 TO 3
0020 LET A=I+1; NEXT I
>SETTRACE
>RUN

0010 FOR 1=1 TO 3

0020 LET A=I+1; NEXT I
0020 LET A=I+1; NEXT
0020 LET A=I+1; NEXT I
END

H

READY
>

M6262A 4-96

SETTRANS

Format

Description

SETTRANS

SETTRANS file—-ID {,ERR=stno!

where file-id is the name of the file containing the
translation instructions.

The SETTRANS directive initiates the translation of string
expressions in BASIC statements.

The string expressions representing file IDs in the fol-
lowing BASIC directives' arguments are translated when
translation is active:

CALL INITFILE OPEN SERIAL
CREATE LISTPROGRAM PSAVE SETFIELD
DIRECT LOAD RENAME SETTRANS
ENCRYPT MAKE PROGRAM RUN SORT
ERASE MULTT SAVE START
INDEXED

Note: in the preceding list, the underlined directives
cannot reference a remote program file.

The string expressions representing task IDs in the fol-
lowing directives are affected when translation is active:

OPEN
RELEASE
START

The string expressions used as arguments in the following
directives are affected when translation is active:

!
SYSTEM

The string expressions representing file IDs in the fol-
lowing BOSS/IX directives are affected when translation is
active:

b

DD
RO

FILE STRING
PROGRAM VMERGE

X

-]
o

Note: in the preceding list, the underlined directives
cannot reference a remote program file.

The following BOSS/VS directives also are affected:

FILE
PROGRAM

4-97 M6262A

SETTRANS SETTRANS
(cont'd) (cont'd)

Translation File Format
The translation file is created using the system text
editor. On BOSS/IX systems, the file is a String file; on
BOSS/VS systems, the file is a Serial file.

The file may contain blank lines, comments, translation
lines, wild-card characters and continuation lines.

Leading blanks on a line are ignored.
Comments Blank lines are treated as comments.

If the first two characters (following leading blanks) are

the same, the line is treated as a comment. E.G.:
'l a comment
%% a comment
Wild-cards A wild-card character is provided for pattern matching.

It is specified by typing a single character, the charac-
ter to be the wild-card, on a line. The default wild-card
character is the asterisk (*). A wild-card character
matches 0 to any number of characters.

Translation Lines Translation lines consist of a delimiter, a "left part", a
delimiter, and a "right part." The first character of a
non-comment line becomes the delimiter for that line.
(Each translation line defines its own delimiter.) The
second occurrence of the delimiter separates the left part
from the right part. E.g.:

:leftpart:rightpart
/leftpart/rightpart

The maximum number of characters in a translation line is
256. This limit includes the left part, the right part,

and the two delimiters.

Continuation Lines Continuation lines are necessary for any line over 80
characters. To indicate that the translation line has one
or more continuation lines, end the translation line with
the delimiter. Continuation lines must begin in column
one (no leading blanks). There is no limit to the number
of continuation lines, but no translation line can be
longer than 256 characters.

Duplicate Entries If the translation file contains more than one line with
the same left part, only the first translation line is
used; all subsequent lines with the same left parts are
ignored.

M6262A 4-98

SETTRANS
(cont'd)

Translation Process

Examples

SETTRANS
(cont'd)

The string expression subject to translation is taken as
the comparison string. This comparison string is then
compared to the left parts in the translation file. Com-
parisons are first made to left parts that do not use
wild-card characters, and then, if no match is found,
against left parts with wild-card characters.

When a match is found, the search is ended and the right
part of that translation line is used instead of the com-
parison string. If no match is found, no translation
takes place.

Translation remains in effect until an ENDTRACE directive
is encountered. Translation of string expressions occurs

before execution of the directive. Ghost tasks inherit
the translation file of the initiator.

A Translation File:

++ The default wild-card is *
'l These first two lines are comments

:ABC: (DISK) .FMF.ABC
\DEF\/sta/titanic/include/defines

:a long:
left part:
with a:
:right part

Comment; the next line changes the wild-card

:#pre:gran-ole-opry
:1#n:ION
*

:post*:post hoc ergo propter hoc
Given the following lines in "transfile" on a BOSS/IX
system

cerror:/include/bfs/error.h
:DATA:/sta/titanic/src/oms/DATA

4-99 M6262A

SETTRANS
(cont'd)

M6262A

SETTRANS
(cont'd)

and given the following lines in "transfile" on a BOSS/VS
system

cerror: (DISK) .FMT.ERR.X.ERROR
:DATA: (DISK) .LAN.MST.DATA

the following program can run on each system and open the
appropriate files:

0010 SETTRANS "transfile"

0020 OPEN (1) "DATA"

0030 OPEN (2) "error"

0040 ENDTRANS
BASIC programs can make use of system dependent features
and still remain transportable with the use of the trans-

lation facility.

For example, given the following in a line in a BOSS/IX
translation file:

:dir:1ls -1 |p
and this line in a BASIC program:

0010 !dir
the program will give a directory listing on either
system. Note, however, that wildcards are applied to each
translation of a string, not just to file-id's. This
means that the translation line

:d*:.dfiles.d~*

will turn 0010!dir into 0010!.dfiles.dir

4-100

SORT SORT

Format SORT "file-id", keysz, recno {,ERR=stno}
where:
keysz = the size of the key, in characters

(nunimum=1, maximum=56)
recno = the maximum number of records in the file
(maximum=8, 388, 608)

Description The SORT statement is used to define a Sort file.

When accessing a Sort file, the I/0 directives used must
not specify any data fields.

SORT can create a remote file.

Example SORT "ACUTE", 15,100

4-101
M6262A

START

Format

Description

Examples

START

START fpages} {,ERR=stno} {,prog-ID} {,task-id}

where:

pages = an integer expression specifying the number of
pages (256 bytes per page) assigned to the task (BOSS/IX:
min=10, max=65535; no effect on BOSS/VS).

prog-id = the name of the program to be run, enclosed in
quotation marks. A full path name is required on BOSS/IX,
but is not required on BOSS/VS. It may not reference a
remote file.

task-id ? the string expression representing the ghost

task being started, enclosed in quotation marks (e.g.,
"GO", "Gl", ...) .

The START directive assigns memory to a task, closes
files, and clears the program and data areas of the task.
START can be used in both program mode and console mode.

The START directive will only affect the currently execut-
ing task (i.e., the one executing the START directive) or

a ghost task, depending upon the statement.
START with no arguments restores user memory from a pre-
vious START. A START with no arguments clears the program

variable tables and data areas and closes any open files.

For BOSS/IX, if no number of pages is assigned, the amount
of memory assigned to the task is not changed.

Although BB86 will accept partial file path names, full
path names are recommended in BOSS/VS to guarantee trans-—

portability.

START cannot reference a remote program file.

BOSS/IX

START 30, "/bin/isys/PROG", "GO"

BOSS/VS

START " (DISK) .lan.prog", "GO"

4-102

STOP STOP

Format STOP

Description The STOP directive is used to terminate a program at any
point other than the end of that program.

STOP resets the program execution pointer to the first
statement of the program, closes all open files and
devices, resets ERR and CTL variables, clears the
RETURN/NEXT stack, and leaves the task in console mode.

Execution of the STOP statement does not alter the data
content of either the user data area or the user program
area.

STO P is identical in function to END, except that END is

used to terminate program loading during a MERGE opera-
tion.

Example 6510 STOP

4-103 M6262A

SYNTAX

Format

Description

Examples

N6262A

SYNTAX

SYNTAX str—-expr {,ERR=stno}

where string-expr contains a BASIC statement.

The SYNTAX directive is used to check the string expres-
sion for syntactical correctness.

If the string expression passed to SYNTAX represents a di-
rective that is permitted only in program mode, then the
string expression must contain a line number.

If the syntax is incorrect, an error is generated; other-—

wise no additional action is taken.

>LET AS = "IF A=0 THEN B=0"
>SYNTAX AS

>RUN

READY

>

0010 LET AS = "IF A=0 THEN B"
0020 SYNTAX AS, ERR=100

0100 PRINT "Syntax error found"

>RUN
Syntax error found

4-104

SYSTEM

Format

Description

Example

SYSTEM

SYSTEM str—-expr

where string-expr is a system directive to be executed at
the system level.

The SYSTEM directive allows the user to execute a system
directive and remain in the BASIC environment. It is si-
milar to the "i" directive, except that is followed by
an unquoted literal while SYSTEM is followed by a proper
string expression. This syntactical difference allows
SYSTEM (unlike "!") to appear at the beginning or in the
middle of compound statements, since the scope of the di-

rective is unambiguous.

12000 REM SUBROUTINE TO EXECUTE SYSTEM COMMANDS
12010 INPUT "ENTER SYSTEM COMMAND TO EXECUTE: ", COMMANDS;
12010:SYSTEM COMMANDS; RETURN

Note that "string-expr" is subject to automatic transla-
tion (refer to SETTRANS).

4-105 M6262A

TABLE

Format

Description

M6262A

TABLE

TABLE hexadecimal-string

TABLE 1is a non-executing statement defining substitution
values used to translate characters from one code to an-—
other during an input/output operation.

Any input/output instruction that specifies a TBL= option
includes, in the processing of that data, a conversion of
each data character using the procedure described below

For input, the conversion is performed before the check is

made for an input field terminator. For output, conver-—
sion is performed after field terminators are supplied by
the system.

The first two digits of the hexadecimal string are used as
a mask byte which filters (by the AND function) each input
byte. The remainder of the hex string is the code com-
parison table and can be 256 or fewer bytes.

An AND function is done with the mask byte and each input
byte to form a temporary result byte. The AND operation
operates at the bit level. When a bit in the input byte
is a 1 and the corresponding bit in the mask byte is 1,
the same bit in the result byte is set to 1. 1If either
the bit in the input byte or the mask byte is 0, the cor-
responding bit in the result byte is set to 0.

The following examples demonstrate the AND operation:

INPUT BYTE 'FA' = 1111 1010 'A6' = 1010 0110
MASK BYTE 'A3' = 1010 0011 '7R' = 0111 1111
RESULT BYTE 'A2' = 1010 0010 '26' = 0010 0110

The resulting byte is then used as a subscript to the code
conversion table. If the value of the subscript is 0, the
first byte in the table (excluding the mask) replaces the

input byte. If the value of the result byte is the binary
equivalent of 20, the 21st byte (including the mask) from

the table replaces the input byte.

NOTE

Proper selection of the mask byte reduces the
size of the table. TIf the mask byte is 0111
1111 (7F), as in the examples above, the result
byte never exceeds 0111 1111 (7F), and the table
does not need to be larger than 64 characters in
length. If the result byte exceeds the size of
the table, the system outputs the result byte.

4-106

TABLE TABLE
(cont'd) (cont'd)

Example The following paragraphs provide an example of the method
used to build a table for EBCDIC to ASCII conversion.

Assume that the data to be read and converted contains
only upper case letters and no special characters or
terminators.

The first step is to build a table of the character set to
be converted, the binary value of each character in as-
cending order. This is shown by columns one and two in
Table 4-2. By looking at the Binary column (Column 2) it
can be determined that the first two bits provide no use-
ful information since they are identical. There are also
cases where they are not the same, but provide no informa-
tion, as in the case of a parity bit. In the example, it
is desirable to strip off the first 2 bits. The mask for
this is 0011 1111, or $3FS.

Next, column 3, which is the decimal value after the mask-
ing operation, is filled. After completing this, columns

4 and 5, which are the ASCII characters and hexadecimal
values that the EBCDIC characters are to be converted to,
are filled. At this point, a second table can be built
showing all possible masked decimal values and their cor-
responding hexadecimal values.

There are usually numerous holes in the table (marked with
an *). These holes must be filled with some hexadecimal
values, such as blanks, or another hexadecimal value that
is not in the output character set, so they can be later
removed. Once this table is complete, it can be written
in BASIC by appending the mask byte to the front of the
hexadecimal wvalues.

4-107 M6262A

TABLES TABLE
(cont'd) (cont'd)

Table 4-2. Table Statement Table

Column 1 Column 2 Column 3 Column 4 Column 5
EBCDIC MASKED ASCII
EBCDIC BINARY DECIMAL CHAR OUTPUT
CHAR VALUE HEX VALUE
VALUE EQUIV BB7 BBS8
A 1100 0001 1 A 41 Cl
B 1100 0010 2 B 42 C2
C 1100 0011 3 C 43 C3
D 1100 0100 4 D 44 C4
E 1100 0101 5 E 45 C5
F 1100 0110 6 F 46]9
G 1100 0111 7 G 47 Cc7
H 1100 1000 8 H 48 C8
I 1100 1001 9 I 49 (°]
J 1101 0001 17 J 41 CA
K 1101 0010 18 K 4B CB
L 1101 0011 19 L 4C CccC
M 1101 0100 20 M 4D CD
N 1101 0101 21 N 4E CE
0 1101 0110 22 0 4F CF
P 1101 0111 23 P 50 DO
Q 1101 1000 24 Q 51 D1
R 1101 1001 25 R 52 D2
S 1110 0010 34 S 53 D3
T 1110 0011 35 T 54 D4
U 1110 0100 36 U 55 D5
\Y 1110 0101 37 v 56 D6
W 1110 0110 38 W 57 D7
X 1110 0111 39 X 58 D8
Y 1110 1000 40 Y 59 D9
Z 1110 1001 41 Z 5A DA
BOSS/IX (low-order ASCII)
Masked Decimal Value O 1 2 3 4 5 6 7 8 9 10*11*12*13*14~*
Output Hex Value 20 41 42 43 44 45 46 47 48 49 20 20 20 20 20
Masked Decimal Value 15*16*17*18 19 20 21 22 23 24 25 26 27 28 29
Output Hex Value 20 20 4A 4B 4C 4D 4E 4F 50 51 52 20*20*20*20*
Masked Decimal Value 30 31 32 33 34 35 36 37 38 39 40 41 42 43 .. 63
Output Hex Value 20*20*20*20*53 54 55 56 57 58 59 5A 20 20 .. 20

0100 TABLE 3F414243444546474849202020202020
204A4B4D4E4F5051522020202020202020
535455565758595A2020202020202020
202020202020202020202020202020

M6262A 4-108

TABLE
(cont'd)

BOSS/VS (high—-order ASCII)

Masked Decimal Value o 1 2 3 4
Output Hex Value AO CI C2 C3 C4

Masked Decimal Value 15*%16*17*18 19
Output Hex Value A0 A0 CA CB CC

Masked Decimal Value 30 31 32 33 34
Output Hex Value AQ*AOQ0*AO0*AO0*D3

20
CD

35
D4

21
CE

36
D5

22
CF

37
D6

0100 TABLE 3FAQC1C2C3C4C5C6CT7C8COAOAOAOAOAOAD
AQCACBCDCECFDOD1D2A0AOAOAOAOAOAOAD
D3D4D5D6D7D8DODAAOAOAOAOAOAOAOAD

AOAOAOAOAOAOQOAOAOAOAOAOAOAQAOAD

23
DO

38
D7

Within the Basic Four system,

often been used i

change Code) to EBCDIC
and vice-versa.
convert between Basic Four character sets and different
languages such as English and German.

terchange Code),

4-109

24
D1

39
D8

TABLE
(cont'd)

10*11*12*13*14~*
AO A0 AO AO AO

25 26 27 28 29
D2 AO*AO*AO*AOQ0*

40 41 42 43 .. 63
D9 DA AO AO .. AO

the TABLE statement has most
n (but is not limited to) the conversion
of ASCII (American Standard Code for Information Inter-
(Extended Binary Coded Decimal In-—

It has also been used to

M6262A

UNLOCK UNLOCK

Format UNLOCK (fileno {,ERR=stno})

Description The UNLOCK directive unlocks files and devices locked by
the LOCK directive, allowing access to the file by other
users.

A locked file automatically becomes unlocked when the file
is CLOSE'd.

Example 0200 UNLOCK (1,ERR=0200)

M6262A 4-110

UNPACK

Format

Description

Example

UNPACK

UNPACK (fileno {,ERR=stno}) var-list

The UNPACK directive reads values from the retain buffer
for the specified logical unit, and assigns those values
to the variables. This is analogous to the way READ takes
values from the I/O buffer.

Parts of the retain buffer that have not been filled are
considered to be filled by nulls. No error is generated.

1500 UNPACK (1)AS,C

See Appendix B for further examples (though UNPACK is not
limited to just multi-key files).

4-111 M6262A

WAIT WAIT

Format WAIT seconds

where "seconds" is a numeric expression specifying the
number of seconds for the pause.

Description The WAIT directive is used to suspend task execution for a

specified number of seconds. The pause can range from 0
to 128,000 seconds.

The number of seconds can be given in tenths of seconds.
No ESCAPE can occur during the wait period. Caution
should be taken not to enter too large a wait amount. If
ESCAPE key interruption is desirable, a small wait period
and a counter could be used.

Example 0200 WAIT 2

0200 WAIT 59.6

4-112

WRITE WRITE

Format WRITE { (filno {,RETAIN} {,DOM=stno! {,END=stno}
{,ERR=stno} {,IND=int-expr} {,KEY=str-expr}
{,SIZz=int-expr} {,TBL=stno})} {,mnemonic}
{,variable-1ist} {,IOL=stno}

NOTE

A comma is inserted before IOL= only when both
IOL= and an argument list are used

Description The WRITE directive is similar to the PRINT directive ex-
cept that the system automatically appends a one-byte line
feed CHR(10), or CHR(138) on EOSS/VS, as a record termi-
tor after every record field it outputs. Also unlike
the PRINT directive, WRITE does not precede a numeric
field with a blank.

Since keys are contained among the records of a multi-
keyed file, the KEY= clause is not allowed in writes to a
multi-keyed file. This generates a run-time error.

Multi-keyed file composite fields must not be specified in
the variable list.

The RETAIN clause causes the data in the retain buffer to
be written, updated with any fields specified in the vari-
able list. The retain buffer itself is not modified by
this operation.

Mnemonic constants and positioning expressions, if in-
cluded as parameters, are output as data to devices other
than terminals and printers.

Direct Files Unless an EXTRACT preceded the WRITE operation (see
EXTRACT), a Direct or Sort file WRITE statement must in-—
clude a key. The system searches the key area to see if
the key already exists in the file. If the (primary) key
already exists, the new record is written over the old
record (unless the DOM= clause was specified). The opera-
tion is then complete. If the key does not exist, the
system must find space for the key and data.

Example 1000 WRITE (2,KEY="JSMITH") NAMES,FIRSTS$,ACCT

4-113 M6262A

WRITE RECORD

Format

Description

Example

M6262A

WRITE RECORD

WRITE RECORD (fileno {,DOM=stno} {,END=stno}
{,ERR=stno} },IND=int-expr} {,SIZ=int-expr}
{,KEY=str-expr} {,TBL=stno}) {string-variable}

The WRITE RECORD statement provides a means of writing a
full record to a file or device without the requirement of
specifying all of the fields which comprise the record.
All field marks are transferred as data and no record
terminator is written. If the field is smaller than the
defined record size, the record is filled with hexadecimal
Zeros.

The KEY= clause may not be used for writing to a multi-
keyed file. An attempt to do so generates a run-time
error.

0100 WRITE RECORD(1)AS$

See Appendix B for the use of WRITE's in multi-key files
or with the RETAIN clause.

4-114

NOTES

NOTES

SECTION 5 - FUNCTIONS

INTRODUCTION The functions described in this section are commands built
into the system that are used to manipulate data for a va-
riety of reasons.

One category of functions contains the binary conversions
used in Boolean algebra. These functions are used primar-
ily in testing whether relationships are true or false, on
or off, open or closed. The functions included here are
AND, IOR (logical or), NOT (inverse string), and XOR
(exclusive or).

A second category of functions contains the various con-—

versions based on the ASCII table. The functions included
here are ATH (ASCII characters to hexadecimal value), HTA
(hexadecimal value to ASCII characters), ASC (ASCII char-

acter to decimal number), CHR (decimal number to ASCII
character), BIN (decimal number to binary), and DEC (bi-
nary to decimal number). These functions are used to

"pack" and "unpack" data in limited memory space, to con-—
vert data to recognizable or useful representations, to
affect speed of processing, etc.

There are a variety of functions besides the types
mentioned above. Some are used in data transmission to
check data integrity, some for requesting file identifica-
tion information, some for performing arithmetic functions
such as modulo and absolute value, and some are used for
compiling statements.

Besides these defined functions, the system allows you to
define 63 other functions using the FNx directive.

5-1 M6262A

ABS (ABSOLUTE VALUE) ABS (ABSOLUTE VALUE)

Format ABS (nuneric-expr)

Description The ABS function computes the absolute value of an argu-
ment. The argument is evaluated for magnitude alone; the
sign (+ or —) is ignored.

Examples 0100 LET X=ABS<12) - assigns the value 12 to X
0100 LET X=ABS<-6.23) - assigns the wvalue 6.23 to X

M6262A 5-2

AND (OCMBINE STRINGS) AND (COMBINE STRINGS)

Format AND (str—expr, str—-expr)
Description The AND function takes two string expressions as arguments
and returns a single string expression as its result. The

resulting string is obtained as the value of the bit-wise
logical conjunction (Boolean product) of the argument
strings, according to the following rules:

0O AND 0 = 0
0O AND 1 =0
1 AND O =0
1 AND 1 =1

In other words, a bit in the result string is set to 1 if
and only if the corresponding bits in both argument
strings are set to 1; otherwise, the bit in the result
string is set to 0.

LET X$=AND ($0F$, SDC$)
PRINT HTA (X$)
0cC

This result is obtained as follows:

SO0F$ = 0000 1111
AND DC = 1101 1100

$0C$

0000 1100

5-3 M6262A

ASC (SERINS TO DECIMAL) ASC (STRING TO DECIMAL)

Format ASC (str—expr {ERR=stno{)
Description The ASC function returns the numeric ASCII value of a
single character. 1If the string expression is longer than

one character, the value returned is the ASC of the first
character in the string.

The value returned is system dependent, depending on
whether the system uses low-order (7-bit) or high-order
(8-bit) ASCII for BOSS/IX and BOSS/VS, respectively.
Examples BOSS/IX
0500 LET X=ASC("A")
Returns a value of 65 to X.
0500 LET X=ASC ("ASCII")
Returns a value of 65 to X, the value of the first
character only.
0500 LET X=ASC(5$41%)
Returns a value of 65 to X, the character "A" is given
as a hexadecimal string.
BOSS/VS
0500 LET X=ASC("A")
Returns a value of 193 to X.
0500 LET X=ASC("ASCII")

Returns a value of 193 to X, the value of the first
character only.

0500 LET X=ASC(S$C1$)

Returns a value of 193 to X, the character "A" is given
as a hexadecimal string.

For a complete form of the ASC function, see "ASCII."

M6262A 5-4

ASCII

Format

Description

Examples

ASCII (str—expr {,ERR=stno})

ASCII

ASCII takes a string expression as an argum ent and returns
the industry standard numeric ASCII code. If the string
expression is longer than one character, only the code for
the first character is returned; all others are ignored.

This function provides a single, system independent method

for producing industry standard ASCII codes. Whereas
BOSS/IX systems use the standard ASCII codes (decimal

codes 0 to 127), BOSS/VS systems use high-order equi-
valents of ASCII codes (decimal codes 128 to 255).

Refer to the CHAR function for a table describing the

ASCII, BOSS/IX and BOSS/VS character codes.

>PRINT ASCII("A")
65
BOSS/IX
10 PRINT ASCII($0AS);PRINT ASCII(S$S8AS)
>RUN
10
138
BOSS/VS
10 PRINT ASCII($8AS$);PRINT ASCII (SOAS)
>RUN

10
138

M6262A

ATH (ASCII TO HEXADECIMAL) ATH (ASCII TO HEXADBCIMAL)

Format ATH (str-expr {,ERR=stno})

Description The ATH function takes pairs of ASCII characters in the
argument string, representing numbers in hexadecimal nota-
tion, and returns a string of character codes having the
represented numeric values.

The argument string can only contain characters 0 through
9 and A through F, since they are representing hexadecimal
digits. If the string has an odd number of characters, a
0 is added to the left.

Each pair of characters is taken as a hexadecimal repre-
sentation of numbers in the range 0 to 255 (hexadecimal 00
to FF). The pair of characters (requiring two bytes) in
the argument string is replaced by a single byte in the

result string having the same numeric value.
For example, "Al" is a string consisting of two ASCII

characters, but represents a number in hexadecimal nota-
tion. This is replaced in the result string by a single

byte with the numeric value hexadecimal Al, (=161,
decimal) . Accordingly, ATHC' Al1l") is equivalent to $Al1S.
Examples BOSS/IX (low-order)

>PRINT ATH("303132")
012

BOSS/VS (high-order)

>PRINT ATH("BOB1B2")
012

M6262A 5-6

ATTR ATTR

Format ATTR (fileno {,"{ALL} (NAME} { OWNER } i USAGE_RIGHTS}
{ ORGANIZATION} { REOORD_SIZE} { REOORDS_ALLOWED}
{ REOORDS_USED} { KEY_SIZE} { INITIAL} { GROWTH}

{ LONG} { SHORT} { WRITE-THRU}"} {,ERR=stno})

Description The ATTR function returns a string containing information
of an open file. The specific information returned de-
pends on the file attributes requested.

The file number parameter is required, and must specify an
already open channel.

The file attributes returned are determined by the list of
attribute names, as shown in the format. In the list of
attribute names to be enclosed within parentheses, it
doesn't matter whether any letter is upper or lower case.
Where underscores are shown, they are required.

When more than one attribute is returned, the attributes
are separated by two (2) spaces, A program can search for

the two spaces to separate attributes.

The attribute names and the information returned are as

follows:

LONG Returns all attributes following the op-
tion in the format "attribute = value".

SHORT Returns the value only for all attributes

following the option in the list. This is
the default, unless ALL is specified.

Note: the preceding two items, LONG and SHORT, can be in-
termixed in the attribute list; for example:

PRINT ATTR (1, "LONG OWNER SHORT NAME LONG GROWTH SHORT
RECORDS USED")

Thus LONG and SHORT can modify all the following attri-

butes.

ALL Returns information on all specifiable at-
tributes. Information is returned in LONG
format, unless SHORT is specified.

NAME Returns the full path name of the file

opened on the specified channel, beginning
with the family or root.

5-7 M6262A

ATTR ATTR
(cont'd) (cont'd)

REOORD_SIZE Returns a number for the defined record
size. Sort files return a size of zero (0).

RECORDS_ALLOWED Returns the maximum number of records.
Devices return zero (0).

REOORDS USED Returns the number of records written
into the file. Devices return zero (0).
ORGANIZATION Returns a 3-byte string describing the

file organization as follows:

BAS = BASIC Program

COB = COBOL Program

DEV = Device, i.e., not a file

DIR = Direct or Sort file

IND = Indexed file

MUL = Multi-keyed file

PAS = Pascal Program (BOSS/VS only)
SER = Serial file

STR = String file (BOSS/IX only)

KEY SIZE Returns a number for the key size in
Direct and Sort files. Returns zero (0) for other file
types.

INITIAL Returns the number of records initially

allocated. Devices return zero (0).

GROWTH Returns the number of records added to a
file each time it needs to be enlarged. Devices return
zero (0).

OWNER Returns the account that owns the file.
USAGE-RIGHTS Returns the usage rights of users other

than the owner.

WRITE-THRU Returns T or F if it is for that file
(T=true, on; F=false, off).

The information returned by ATTR is similar to the in-
Formation returned by FID, except that:

o ATTR returns a variable length ASCII string while FID
returns a fixed length binary string.

o ATTR can return all the attribute information that FID

can, plus initial extent, growth extent, owner and
usage rights.

M6262A 5-8

ATTR
(cont'd)

Examples

ATTR
(cont'd)

o ATTR allows specification of the attributes to be
returned; FID returns everything.

o ATTR is sytem indipendend whereas FID is not. Only
the specific,

varies, e.g.

format.

system dependend nformation returned
.file path name format and usage rights

The following examples assume the following file open on

channel 1:

NAME (BOSS/IX)
(BQSS/VS)
ORGANIZATION
RECORD SIZE
RECORDS ALLOWED
RECORDS USED
KEY SIZE
INITIAL
GROWTH
OWNER (BOSS/IX)
(BOSS/VS)
USAGE_RIGHTS
(BOSS/IX)
(BOSS/VS)
WRITE THRU

/usr/barry/src/myfile
(DISK) .ABC.MYFILE

IND

120
1000
352

0

334

150
barry
MY .ACCT

rw. IW.
W(SR.*);R(*.%)
T

>AS$=ATTR (1, "ORGANIZATION")

>PRINT AS
IND

>LISTS="Long key_size"
>AS$=ATTR(1,LISTS)

>PRINT AS
KEYSIZE=0

>AS$=ATTR (1, "SHORT KEY_SIZE")

>PRINT AS
>0

>PRINT ATTR(1,"ALL")

M6262A

ATTR ATTR
(cont'd) (cont'd)

BOSS/IX returns:

NAME=/usr/barry/src/rayfile ORGANIZATION=IND
RECORD_SIZE=1000 RECORDS_ALLOWED=1000 RECORDS_USED=352
KEY_SIZE=0 INITIAL=334 GROWTH=150 OWNER=barry
USAGE_RIGHTS=rw. rw. WRITE_THRU=F

BOSS/VS returns:

NAME= (DISK) .ABC.MYFILE ORGANIZATION=IND REOORD_SIZE=1000
RECORDS_ALLOWED=1000 RECORDS_USED=352 KEY_SIZE=0
INITIAL=334 GROWTH=150 OWNER=MY.ACCT
USAGE_RIGHTS=W(SR.*);R(*.*) WRITE_THRU=T

M6262A 5-10

BIN (BINARY) BIN (BINARY)

Format BIN (num-expr, int-expr)

where the integer expression is the length of the string.

Description The BIN function returns a string containing the binary
representation of the value of the argument. The string
is the length specified, padded with hexadecimal zeroces to
the left, if necessary.

If the length is too short to contain all the significant
digits of the number, an ERROR 40 results.

The leftmost bit is considered the "sign" bit that tells
the system to interpret the number as positive or nega-
tive. If the leftmost bit is zero ("off") the value is
positive. If it is one ("on") the value is negative.
Negative numbers are stored in "two's complement," an in-
version of the bit structure.

The Binary to Hexadecimal Conversion Table is as follows:

0000 = 0 0100 = 4 1000 = 8 1100 = C
0001 =1 0101 = 5 1001 = 9 1101 = D
0010 = 2 0110 = 6 1010 = A 1110 = E
0011 = 3 0111 = 7 1011 = B 1111 = F
Examples LET X$=BIN(50,2) - X$ is 0032
LET X$=BIN(1024,2) - X$ is 0400
LET X$=BIN(-50,2) - X$ is SFFCES
LET X$=BIN(193,1) - X$ is S$C1$

To print the value of X$ in hexadecimal format, enter:

>PRINT HTA (X$)
Cl

5-11 M6262A

CHAR

Format

Description

Examples

M6262A

CHAR

CHAR (num—-expr {,ERR=stno})

CHAR takes an industry standard (low-order) ASCII code and
returns the charcter from the BOSS/IX or BOSS/VS charac-
ter set.

The numeric-expression must have an integer value between
0 and 255. The hexadecimal string value returned is
system dependent (low-order on BOSS/IX, high-order on
BOSS/VS) .

The use of CHAR (rather than the CHR function) is recom-
mended whenever a literal hexadecimal string is required
to ensure the transportability of the BASIC program be-
tween BOSS/IX and BOSS/VS systems.

>10 X = POS(CHAR(10)=STRINGS)

>A$ = CHAR(10)
>BS = CHAR(66)

BOSS/IX

>PRINT HTA (AS)
OA
>PRINT BS$S

B

BOSS/VS

>PRINT HTA (AS)
8A

>PRINT BS

B

CHAR CHAR
(cont'd) (cont'd)

Table 5-1. Character Code Conversions

ASCII BOSS/IX BOSS/VS ASCII BOSS/IX BOSS/VS
Character Decimal Hex Hex Character Decimal Hex Hex
NUL 0 00 80 0 48 30 BO
SOH 1 01 81 1 49 31 Bl
STX 2 02 82 2 50 32 B2
ETX 3 03 83 3 51 33 B3
EOT 4 04 84 4 52 34 B4
ENQ 5 05 85 5 53 35 B5
ACK 6 06 86 6 54 36 B6
BEL 7 07 87 7 55 37 B7
BS 8 08 88 8 56 38 B8
HT 9 09 89 9 57 39 B9
LF 10 OA 8A : 58 3A BA
BT 11 0B 8B ; 59 3B BB
FF 12 ocC 8C < 60 3C BC
CR 13 0D 8D = 61 3D BD
S0 14 0E 8E > 62 3E BE
ST 15 OF 8F ? 63 3F BE
DLE 16 10 90 a 64 40 CO
DC1 17 11 91 A 65 41 CI
DC2 18 12 92 B 66 42 C2
DC3 19 13 93 C 67 43 C3
DC4 20 14 94 D 68 44 c4
NAK 21 15 95 E 69 45 C5
SYN 22 16 96 F 70 46 Co6
ETB 23 17 97 G 71 47 C7
CAN 24 18 98 H 72 48 C8
EM 25 19 99 I 73 49 C9
SUB 26 1A 9A J 74 4A CA
ESC 27 1B 9B K 75 4B CB
FS 28 1C 9C L 76 4C cC
GS 29 1D 9D M 77 4D CD
RS 30 1E 9E N 78 4F CE
Us 31 1F oF ¢) 79 4F CF
space 32 20 AQ P 80 50 DO

5-13 M6262A

CHAR CHAR
(cont'd) (cont'd)

Table 5-1. Character Code Conversions (Cont'd)

ASCII BOSS/IX BOSS/VS ASCII BOSS/IX BOSS/VS
Character Decimal Hex Hex Character Decimal Hex Hex
! 33 21 Al Q 81 51 D1
" 34 22 A2 R 82 52 D2
35 23 A3 S 83 53 D3
S 36 24 A4 T 84 54 D4
% 37 25 AS U 85 55 D5
& 38 26 A6 v 86 56 D6
? 39 27 A7 W 87 57 D7
(40 28 A8 X 88 58 D8
) 41 29 A9 Y 89 59 D9
* 42 2A AA Z 90 5A DA
+ 43 2B AB [91 5B DB
, 44 2C AC \ 92 5C DC
- 45 2D AD [93 5D DD
? 46 2E AE ” 94 5E DE
/ 47 2F AF _ 95 5F DF
? 96 60 EO P 112 70 FO
a 97 61 E1l q 113 71 Fl
b 98 62 E2 r 114 72 F2
e} 99 63 E3 s 115 73 F3
d 100 64 E4 t 116 74 F4
e 101 65 ES u 117 75 F5
f 102 66 E6 v 118 76 Fo6
g 103 67 E7 W 119 77 E7
h 104 68 E8 X 120 78 F8
i 105 69 E9 y 121 79 F9
j 106 6A EA z 122 7A FA
k 107 6B EB { 123 7B FB
1 108 6C EC | 124 7C FC
m 109 6D ED } 125 7D FD
n 110 oE EE ~ 126 TE FE
[e) 111 oF EF DEL 127 TF FF

M6262A 5-14

CHR (NUMERIC TO ASCII)

Format

Description

Examples

CHR (num-expr t,ERR=stno})

The CHR function converts the numeric expression to an
The number passed is system dependent,
based on the character set of the system

ASCII character.

CBR (NUMERIC TO ASCII)

CHAR function for a table of wvalues).

The value must be in the range 0 - 255;
41 is generated.

BOSS/IX

0100 LET
0100 LET

BOSS/VS

0100 LET
0100 LET

X$=CHR (65)
X$=CHR (49)

X$=CHR (193)
X$=CHR (177)

stores
stores

stores

stores

"A"
n 1 n

"A"

"1"

(refer to the

otherwise an ERROR

in
in

in

in

XS

XS

XS

See the CHAR function for a system-independent version of

CHR.

M6262A

CRC (CYCLIC REDUNDANCY CODE) CHC (CYCLIC REDUNDANCY CODE)

Format CRC (str-expr {,2-byte string})

where the 2-byte string is the seed or start value.

Description Used to check for data integrity, the CRC function com-
putes checksums for a string variable. Creation of the

checksum is based upon the unique bit pattern of the
series of characters comprising the string.

Examples 0020 LET AS$=CRC (BS)
0030 LET A=ASC(AS$ (1)) *256+ASC(AS(2))
Returns a 2-byte string in AS.
The CRC function also allows the accumulation of the CRC
of a large string without having the complete string in
memory at one time.
C$=CRC (A$+BS$) is equivalent to:

C$=CRC (AS$), CS$S=CRC(BS,CS)

NOTE
If the CRC is to be used in conjunction with

unformatted synchronous communications, the
bytes must be in reverse order.

M6262A 5-16

DEC (BINARY TO DECIMAL) DEC (BINARY TO DECIMAL)

Format

Description

Examples

DEC (str—expr)

The DEC function converts a binary string expression into
a signed decimal number (either positive or negative).
The leftmost bit is considered the "sign" bit. If "on"
(1), the number is negative.

Negative numbers are stored in two's complement (negative
binary) notation.

The DEC and BIN functions are complements.

LET X=DEC (0032) - X is 50
LET X=DEC (SFFCES$) - X is =50

LET X=DEC (0400)

- X is 1024
LET X=DEC ($FFS)

- X is -1
LET X=DEC (00+SFF) - X is 255
PRINT DEC ($O0FFCES) - 65486
>PRINT DEC ($003283)

50

BOSS/IX
LET X=DEC ("A") - X is 65
LET X=DEC (S00S$+"A") - X is 65
BOSS/VS
LET X=DEC ("A") - X is -63
LET X=DEC (00+"A") - X is 193

5-17 M6262A

EPT (EXPONENT) EPT (EXPONENT)

Format EPT (num-expr)
Description The EPT function returns the exponent of the numeric ex-
pression.
Examples LET X=EPT (55) then: X=2
.55*1072
LET X=EPT (5.23) then: X=1
.523*10"1
LET X=EPT (-500> then: X=3
-.5%10"3
LET X=EPT (0) 0*1070 then: X=0
LET X=EPT (.00001) .1*107-4 then: X=-4

>PRINT EPT (55)
2

M6262A 5-18

FMTINFO (FORMAT INFORMATION) FMTINFO (FORMAT INFORMATION)

Format FMTINFO (fileno {,field-selector {,info-selector}})
where:

field-selector = a field variable or an integer expression
giving the sequential location of the field

info-selector = 0 or 1, specifying the information to be
returned (see below)

Description The FMTINPO function returns multi-keyed file format in-
Formation.

FMTINPO returns an empty string when the channel is open
to anything other than a multi-keyed file.

FMTINPO also returns the correct field information, using
the field alias name.

The field or fields for which information is to be re-
turned is specified either by a field variable which has
been set to a field name, or by an integer indicating the

sequential position of the field in the record. If no
fields are specified, or the selector is set to 0, the
entire format string is returned, with each field sepa-
rated by two spaces.

The information selector can be either 0 or 1, and speci-
fies what information is to be returned for a particular
field, as follows:

0 (or omitted) Returns the part of the format string for
the field, including the field name and
characteristics.

1 Returns a two-byte string with the follow-—
ing interpretation ("x" can be 4 bits of
anything) :

Byte 1 - field type

S$1x$ "N" fixed length

$208 "s" fixed length

$218 "c" fixed length

$228 "X" fixed length (not composite)
$5x$ "N*" variable length

$6x$ "S*" variable length

SFx$ Composite field

5-19 M6262A

FMTINFO (FORMAT INFORMATION)
(cont'd)

Byte

S0x$
$1x$
$2x$
$3x$

Example >A$ = FMTINFO (1, NAME#)

FMTINFO (FORMAT INFORMATION)
(cont'd)

2 — key type

NOKEY
PRIMARY
ALTKEY
DUPKEY

Returns the format string for the field associated with
NAME# from the multi-keyed file on channel 1.

M6262A

FNx (DEFINE FUNCTION) FNx (DEFINE FUNCTION)

Format FNx {$} (arg-list)
where:

x 1s the function name, following the same rules as for
variable names.

$ specifies a string function.

argument-1list is the list of arguments provided for by the
DEF statement.

Description Used with the DEF directive, FNx allows reference to user
defined functions not provided in Business BASIC (see DEF
directive) .

Example 0230 LET A=FNA (B, D)

5-21 M6262A

FPT (FRACTIONAL PART) FPT (FRACTIONAL PART)

Format FPT (num—-expr)

Description The FPT function returns the fractional part of the
numeric expression, rounded to the PRECISION in effect.

Examples 0200 PRECISION 3
0210 LET X=FPT(55.885) X=.885

0200 PRECISION 2
0210 LET X=FPT<55.885) X=.89
0215 LET X=FPT (55.884) X=.88

M6262A 5-22

GAP (GENERATE ODD PARITY) GAP (GENERATE ODD PARITY)

Format GAP (str—expr)

Description This function generates a string that is identical to the
specified string expression except that the high-order bit
of each byte is set so that the byte has odd parity (that
is, an odd number of bits in the byte are "on").

Example 0200 LET AS$=GAP ($0FDCS$) - AS is equal to S$8FDCS
0300 LET BS$=GAP ($S8FDCS) - BS$ is equal to $8FDCS

5-23 M6262A

HSH (HASH) HSH (HASH)

Format HSH (str-expr {,2-byte string})
where the 2-byte string is the seed or start string.
Description The HSH function computes a "hash string value" from the
system 's algorithm.
If the seed string is specified but is not two bytes long,
an error 20 is generated.
Examples 0600 LET AS$=HSH (BS)

Computes the hash algorithm on BS$ and stores the two-
byte result in AS.

0600 LET AS$=HSH(B$,CS)
If C$ is 0000, this returns the same result as

AS=HSH(BS$). Otherwise, C$ is used by the hash algo-
rithm to calculate the two-byte result.

M6262A

HTA (HEXADECIMAL TO ASCII) HTA (HEXADECIMAL TO ASCII)

Format HTA (str—expr)

Description The HTA function converts the hexadecimal value of a
string expression to pairs of ASCII characters represent-
ing that hexadecimal value. Accordingly, the string
returned by HTA is twice as long as the string passed to
The HTA function is the converse of the ATH function and
is used to print the stored value in a form recognizable
as a hexadecimal number.

Examples BOSS/IX
LET XS$=HTA ("ABC") - X$ dis "414243"
LET X$=HTA("123") - X$ is "313233"
BOSS/VS
LET XS$=RTA ("ABC") - X$ is "c1c2c3"
LET XS$=RTA("123") - X$ is "B1B2B3"

5-25 M6262A

IND (INDEX) IND (INDEX)

Format IND (fileno {,END=stno} {,ERR=stno})

Description The IND function returns the index of the next record to
be accessed on the specified file. For Indexed and Serial
files, the value returned is the index of the next sequen-
tial record. For Direct and Sort files, the value re-—
turned is the index of the next higher logical key.

The IND function is not supported for multi-keyed files.
An attempt to use it generates a run-time error.
IND will not move the current record position to the next

record.

Example LET A=IND(1,ERR=0500)

M6262A 5-26

INT (INTEGER)

Format

Description

INT (INTEGER)

INT (num—-expr)

The INT function returns the integer part of the numeric
expression. Any fractional digits are removed, and round-
ing does not occur.

0100 LET X=INT(5.84) - X 1is 5
0200 LET Y=INT (.333) - Y is O
0300 LET Z=INT(-6.22) - Z 1is -6

5-27 M6262A

IOR (INCLUSIVE OR) IOR (INCLUSIVE OR)

Format IOR (str—-expr, str—-expr)
Description The IOR function takes two string expressions as arguments
and returns a single string expression as its result. The

resulting string is obtained as the value of the bit-wise
logical disjunction (Boolean sum or logical OR) of the
argument strings, according to the following rules:

0O IOR 0 = 0
0 IR 1 = 1
1 IR 0 = 1
1 IR 1 = 1
Example LET X$=IOR($OF$, $DCS)
then: SOF$ = 0000 1111

DCS = 1101 1100

X$ = DFS = 1101 1111

M6262A 5-28

KEY KEY

Format KEY (fileno {,ERR=stno} {,END=stno} {,IND=recno})
Description The KEY function returns a string containing the key of
the next record to be accessed from the file.
For multi-keyed files, the key returned is the next key in
the current key set. The string is not converted to the
type of its underlying field, but is treated as an "3"
type field, with the trailing nulls removed.
KEY strips trailing nulls from the key it returns.
KEY will not update the current record position to the

next record.

Example 0075 LET AS=KEY (1,ERR=0500,END=2000)

M6262A

LEN (LENGTH) LEN (LENGTH)

Format LEN (atr—expr)

Description The LEN function returns the length of the string, includ-
ing any non-printable or fill characters.

Exanples 0010 LET AS$="ABC"
0020 LET BS$="DEFG"
0030 LET X=LEN(AS) - X is 3

0040 LET Y=LEN(A$+BS$) - Y is 7

5-30 M6262A

LRC (LCNGITUDINAL REDUNDANCY CHECK) LRC (LCNGITUDINAL REDUNDANCY CHECK)

Format

Description

Example

LRC (str—expr)

Used to perform a data integrity check, this function com-—
putes a longitudinal redundancy check based on the string
expression.

The code generated is returned as a l-byte string, and is

equivalent to taking the exclusive OR (XQR) of all bytes
of the argument string. A Null argument returns 00.

>LET A$=LRC ($1C4D278%)
>PRINT HTA (AS)

76

5-31 M6262A

MOD (MODULO)

Format

Description

Examples

M6262A

MOO (MODULO)

MOD (num-expr—-a, num—-expr-b)

The MOD function returns the result of the modulo func-
tion. MOD can be thought of as returning the remainder of
the division of the first numeric expression by the sec-—
ond, except that the result is always positive.
Precisely, MOD(X,Y) is defined as follows:

Case 1: If Y = 0, MOD(X,Y) = X

Case 2: If Y <> 0, MOD(X,Y) = X — <Y*FLOOR<X/Y)),

where, FLOOR(Z) 1s the largest integer less than, or equal
to, Z.

MOD (26, 7) is 5

MOD (22,11) is O

MOD (-5, 3) is 2

MOD (7, —4) is 3

MOD (-8,-5) is 3

NOT (INVERSE STRING) NOT (INVERSE STRING)

Format NOT (str—expr)

Description The NOT function returns a string that is the result of
taking the inverse of the string, bit by bit. The rules
for the NOT operation are:

NOT 0 =1
NOT 1 = 0
Example 0100 LET X$=NOT ($SDCS)
DCS = 1101 1100
NOT (SDCS$S) = 0010 0011 = 23

M6262A

NUM (NUMERIC VALUE) NUM (NUMERIC VALUE)

Format NUM (str—-expr {,ERR=stno})

Description The NUM function returns the numeric value of the charac-
ters in the string expression. All characters in the
string must be numeric, or related to numbers; e.g., "+",
n ", "_", "'", "E" Sre legal.

Example 0100 LET As$="224"
0200 LET B=NUM(AS$, ERR=8000)

B is 224. 1If AS$ contains any invalid characters, pro-

gram control transfers to statement 8000, and an error
26 results.

M6262A 5-34

POS (POSITION)

Format

Description

Examples

POS

(scan-str relational-op target-str {,step})

where:

scan-string is the string

(in constant or variable form)

being searched for in the target string

relational-op is one of the valid relation symbols:

target-str is the

comparison

The POS function is used to determine the position of
specified character (s)
than those within a specified string.
is the offset of the first matching substring in the

= <> or X
< <= or =<
> >= or =>

target string.

string

less than,

(in constant or variable form)
be searched for an occurrence of the scan string

step value is the increment defining the intervals at
which the target string is examined for each subsequent
(default value is 1)

equal to,

Oor Jgreater
The value returned

POS (POSITION)

to

A zero 1is returned if no substring is found that meets the
requirements.

LET A$="ABCDEFGHIJKL"

LET

LET

LET

LET

LET

LET

LET

X=POS ("D"=AS)
X=POS ("D"<AS)

X=POS ("D">AS)
X=P0S ("5"=AS)
X=POS ("DE"=AS, 3)
X=POS ("DE"=AS$, 4)

X=POS ("DE"<AS, 3)

(target
X is
X is
X 1is
X is
X is
X is
X is

string)

M6262A

SGN (SIGN) SGN (SIGN)

Format SGN (num-expr)

Description The SGN function returns the sign of the numeric expres-
sion. If the expression is negative, a -1 is returned; if
it is positive, a 1 is returned; and if it is zero, a 0 is
returned.

Exanples LET X=SGN(-77) - X=-1
LET X=SGN (6) - X=1
LET X=SGN(0) - X=0

M6262A 5-36

STR (STRING) STR (STRING)

Format STR (num-expr {:mask})

where mask is a format mask (refer to "NUMERIC EDITING" in
Section 2)

Description The STR function converts the numeric expression to a

string of characters. The length and format of the string
are specified by a format mask. The mask can be expressed
as a string constant surrounded by quotation marks, or as
a string variable.

Examples LET X$=STR(100:"00000") - X$ is "00100"
LET A=100
LET X$=STR(A:"$##0.00") - X$ is "$100.00
LET X$=STR(100) - X$ is "100 «

5-37 M6262A

TBL (TABLE) TBL (TABLE)

Format TBL (str—expr, atno)

Description The TBL function performs table translation. It trans-
lates the string in its first argument using the TABLE
statement referenced by the second argument.

This function performs the same operation as the TBL= op-
tion on an input (READ, INPUT , FIND) or output (WRITE,
PRINT) directive. TBL is the only way to do table trans-—
lation independent of an I/O directive.

Examples 0010 INPUT "ENTER ASCII STRING ",ASCIIS
0020 EBCDICS = TBL(ASCIIS$, 14000)

where statement 14000 has the ASCII to EBCDIC
translation table.

0100 ASCII7S$=TBL(ASCII8S,12000)

12000 TABLE 7F
This example assigns into ASCII7$ the contents of

ASCI18%, with the high bit turned off. For example, if
ASCII8S is $C1C2C3S$, ASCIIT7S will be $4142435.

M5262A 5-38

TRANS TRANS

Format TRANS (str—expr)
DESCRIPTION The TRANS function returns a string which is the result of
translating the string expression argument. The transla-—

tion rules specified in the SETTRANS directive are fol-
lowed. The string expression argument can be thought of
as the "left part" and the string result as the "right
part."

The TRANS function always attempts to translate the string
even i1if translation has been turned off using the ENDTRANS
directive.

If a SETTRANS directive has never been issued, and there-
fore no translation file has been named, the input string
will be returned unchanged. Otherwise, the most recently
referenced translation file will be used to perform the

translation.
Examples 0010 AS$S = TRANS ("BOSS/IX id")
0100 EXECUTE "copy "+TRANS (AS)+ " "+TRANS (BS)

5-39 M6262A

XOR (EXCLUSIVE OR) XOR (EXCLUSIVE OR)

Format XOR (str—-expr, str-expr)

Description The XOR function returns a string that is the result of
combining the bits of the first string with the bits of
the second string according to the following rules:

0 XOR 0 =0
0 XOR 1 =1
1 XOR 0 =1
1 XOR'1 =0

The strings must be the same length.

Example LET XS$=XOR ($SOFS$, $SDCS)

then: SOF$ = 0000 1111
SDCs$ = 1101 1100

$D3$

1101 0011

M6262A 5-40

NOTES

5-41 M6262A

NOTES

SECTION 6 - SYSTEM VARIABLES

A system variable is a variable whose value is established
by the operating system.

System variable names are often mnemonic, suggesting their
values, e.g., the time (TIM) and date (DAY).

M6262A 6-1

CSW (CALL SWITCH) CSW (CALL SNITCH)

Format CSW
Description The CSW system variable tells whether the program current-—
ly in use is a CALL'ed program or a RUN program . CSW has

a value of 1 if the program is CALL'ed; otherwise its
value is 0.

Examples >PRINT CSW

00100 IF CSW=1 THEN ENTER AS ELSE BEGIN

M6262A 6-2

CTL (CONTROL VARIABLE) CTL (CONTROL VARIABLE)

Format CTL

Description The CTL variable contains a number that indicates which
field terminator was used to end the last input statement.
The meaning of each terminator key is defined by the ap-
plication.
The following table shows the terminator keys that the op-

erator can use, and the ASCII and CTL values. CTL is set
to five (5) if input is terminated because a "SIZ=" clause

in an input statement was satisfied.

CTL is set only by INPUT and READ statements. INPUTRECORD
and READRECORD leave CTL unchanged.

Table 6-1. TERMINATOR KEY CONTROL VALUES

| BOSS/IX BOSS/VS ASCII

| KEY VALUE VALUE CHARACTER CTL VALUE |
| |
| |
| (None) 00 00 NULL 0

| |
| LINEFEED S0AS $8AS LF (linefeed) 0

| |
| RETURN $0D$S $8DS CR (carriage return) 0

| |
| CTL-I Sic$ S9C$S FS (field separator) 1

| |
| CTL-II S1DS S9DS GS (group separator) 2

| |
| CTL-III S1ES S9ES RS (record separator) 3

| (or CTRL+'N¥*) |
| |
| CTL-IV S1FS SOFS US (unit separator) 4

| (or CTRL+'0Q") |
| |
| (SIZ=satisfied) (none) (none) 5

| |
Examples 00100 PRINT CTL

00100 IF CTL=4 THEN GOTO 9000

6-3 M6262A

DAY (DATE)

Format

Description

Examples

M6262A

DAY (DATE)

DAY

The DAY variable contains the current date as an 8-byte
string, and is set by using the SETDAY directive. The
date is returned in the format, mm/dd/yy, on BOSS/IX
systems. On BOSS/VS systems, it is returned in the cur-
rent system date format.

>PRINT DAY

00100 LET XS$=DAY

DEVINFO DEVINFO

Format DEVINFO

Description The DEVINFO system variable contains a string containing
information about each of the system's configured devices.

The string is composed of ten-byte substrings, one sub-
string per device, in the following format:

Bytes Description
1-5 Device name, padded with trailing blanks
6 Shared memory controller number and IMLC

line number (see SMC ID codes below)
7 Device type code (see table below)
8 Device status code
9 ISDC line number
0 Not used, always zero

The information returned for the SMC ID code (byte 6),
device type code (byte 7), device status code (byte 8),
and ISDC line number (byte 9) apply to BOSS/VS systems
only. These values are set to zero (0) on BOSS/IX
systems.

The lower 3 bits of the byte contain the line number (0-7)
of the devive if the device resides on an ISDC controller.
On a 4-way ISDC (MCS) controller, this is a 2-bit line
number and bit 3 is zero. The 16-way ISDC controller is
treated as two consecutively addressed 8-way ISDC control-
lers. For any other type of device, this field is zero.
The other 5 bits are reserved for future use.

Table 6-2. SMC ID CODES

Bits Description
0 Line number - A is 0, B is 1 on IMLC
1-6 Shared memory controller number, range is
0-63
7 Not used

If the device is on an ISDC controller, the shared memory
controller number field of this entry is valid and the
line number is zero. If the device is neither an IMLC nor
an ISCD, the entire SMC ID code is zero.

M6262A

DEVINFO DEVINPO
(cont'd) (cont'd)
Table 6-3. Device Type Codes

CODE DESCRIPTION

hex dec

00 0 no device

01 1 high speed VDT

02 2 Dataword II MDT in WP mode

03 3 Dataword II MOT in VDT emulation mode

04 4 Ghost terminal

05 5 7250 terminal

06 6 Transportable Batch Communications (TBC)

07 7 TBC autodial unit

08 8 3270 running on IMLC

09 9 X.25 running on IMLC

OA 10 Basic Four interface system serial printer

0B 11 asynchronous driver

ocC 12 asynchronous modem driver

0D 13 7270 terminal

OE 14 EVDT terminal

OF 15

10 16 Basic Four interface slave printer

11 17 Parallel matrix printer

12 18 Parallel band printer

13 19 MTR 1/2" Reel-to-reel tape drive

14 20 MTS 1/2" Streaming tape drive

15 21 COT terminal

16 22 S/10 terminal

17 23 Special VOT device

18 24 Letter quality serial system printer

19 25 Reserved for DMP serial system printer with
IGP

1A 26 DMP serial system printer

IB 27 DMP parallel system printer

1C 28 Industry Standard slave printer (S/10 slave
printer

ID 29 Reserved for Industry Standard system serial
printer

IE 30 Reserved for letter quality slave printer

IF 31 Reserved for future GCR tape device

20 32 MCS 1/4" cartridge streamer tape drive

M6262A 6-6

DEVINFO
(cont'd)

Examples

DEVINPO
(cont'd)
Table 6-3. Device Type Codes (cont'd)
CODE DESCRIPTION

hex dec

21 33 Reserved for tape devices

* * *

* * *

2C 44 Reserved for tape devices

2D 45 EOT terminal

2E 46 Reserved for EOT with monochrome graphics
2F 47 Reserved for IMLC diagnostic port

30 48 MAGNET socket

31 49 VDT/B

32 50 14" intelligent terminal

33 51 available

* * *

* * *
FF 255 available
Table 6-4. Device Status Codes
Bit Description if bit is "ON"

0 ESCAPE entered on terminal device

1 Device is open or in use

2 Device is not configured

3 Printer is dedicated

4 Terminal has a slave printer
5-7 unused

00100 A$ = DEVINFO

00110 B$ = POS(FID(0)=AS$,10)

00120 IF BS$(7,1) = $2DS$ PRINT "THIS IS AN EOT TERMINAL"

6-17 M6262A

ERR (ERROR) ERR (ERROR)

Format ERR { (code-1, code-2,...,code-n)}

Description The ERR variable contains the value of the last error that
occurred. This can be a number from 0 to 127.

ERR can be printed to display the previous error number.
ERR can also be used to branch to a specified statement

number, based upon the error code of the previous error.

Examples 00100 PRINT "ERROR CODE = ", ERR
00999 EXIT ERR
00050 ON ERR(11,12,47) GOTO 100,200,300,400
branch to 100 if error is other than 11, 12 or 47
branch to 200 if error=11
branch to 300 if error=12
branch to 400 if error=47

The same operation can be written using a LET statement:

00050 LET E=ERR (11,12,47)
00060 ON E GOTO 100,200,300,400

M6262A 6-8

PNM (PROGRAM NAME) PNM (PROGRAM NAME)

Format PNM

Description PNM returns the name of the program currently in main
memory. When used in a Public Program , PNM returns the
name of the CALL'ed program.

The format of the string returned is that of a full path

name, including the family on on BOSS/VS systems and the root
directory on BOSS/IX systems.

Example >LOAD "BOXCARS"

BOSS/IX
>PRINT PNM

/usr/trainset/BOXCARS
>

BOSS/VS
>PRINT PNM

(DISK) . TRAINSET.BOXCARS
>

6-9 M6262A

PRC (PRECISION) PRC (PRECISION)

Format PRC

Description The PRC system variable returns a numeric value which is
the current arithmetic precision of the user's BASIC task.
This numeric value 1s between 0 and 14, inclusive, match-
ing the range of arguments for the PRECISION directive, or
-1 (-.1E+01) when BASIC is in floatingpoint. PRC can
only be changed by the PRECISION and FLOATINGPOINT direc-
tives.

Examples >CLEAR

>PRINT PRC

2

>PRECISION 14
>PRINT PRC

14
>FLOATINGPOINT
>PRINT PRC
-.1E+01
>

M6262A 6-10

PSZ (PROGRAM SIZE)

Format

Description

Example

PSZ (PROGRAM SIZE)

PSZ

The PSZ variable contains the number of bytes used by the

resident program, not including data. If PSZ is
referenced in a CALL'ed program, the value is the size of
the CALL'ed program.

In BOSS/IX, PSZ includes the user program area overhead.
Therefore, PSZ always equals at least 34. Part of this
overhead is environment-dependent and may vary (generally
not more than 20 bytes). Therefore, PSZ may return
slightly different values for the same program.

In BOSS/VS, PSZ is the size of the program segment and
does not include the size of tables or source. This num-—

ber can vary considerably from the value of PSZ returned
for the same program on a BOSS/IX system

>PRINT PSZ

6-11 M5262A

SSN (SYSTEM SERIAL NOHBER) SSN (SYSTEM SERIAL NCMBER)

Format SSN

Description The SSN variable contains the system serial number,
returned in a 10-byte string.

Example BOSS/IX

>PRINT SSN
2000-90034

BOSS/VS

>PRINT SSN
810-30000

M6262A 6-12

SYS (OPERATING SYSTEM LEVEL) SYS (OPERATING SYSTEM LEVEL)

Format SYS
Description The SYS variable contains a string identifying the BASIC
Language release and version levels. The format of the

string is:

name release*version

BOSS/IX

>PRINT SYS
BB86 07.03A

BOSS/VS

>PRINT SYS
BB86 08.06A

6-13 M6262A

TCB (TASK CONTROL BLOCK) TCB (TASK CONTROL BLOCK)

Format

Description

M5262A

TCB (num—-expr)

where numeric-expr has a value ranging from 0 to 12.

The TCB variable contains information that pertains to a
particular task.

Some TCBls must be converted into decimal or hexadecimal
Format to be useful. Table 6-5 shows the contents of each
TCB

Some TBC cells, in particular, cells 4, 5, 6, 7, and 12,
return the same kind of information on all systems running
BB86, though the format may differ. Other cells return
specific information depending on whether the operating
system is BOSS/IX or BOSS/VS, and are not defined in BB86.

TCB (TASK CONTROL BLOCK) TCB (TASK CONTROL BLOCK)
(cont'd) (cont'd)

Table 6-5. TCB VARIABLE FORMAT

BYTE
TCB (n) LENGTH DESCRIPTION
0-2 undefined

3 2 BOSS/IX, communication device status

4 2 current statement number, if any; or O

5 2 statement number of last error, if any;
or 0

6 2 statement number SETESC references, if
any; or 0 — if SETESC references a
non-existing statement number, TCB(6)
will be |600]

7 2 statement number SETERR references, if
any; or 0 — if SETERR references a
non-existing statement number, TCB(7)
will be |600]

8-9 undefined

10 2 BOSS/VS — 0 = EXTEND mode;
1 = NO EXTEND mode

BOSS/IX - logical unit of most recent

I/0 error

12 2 BOSS/IX — most recent system error code,
a negative number

4 BOSS/VS - most recent system error code,

in fourtuple format

11 1 BOSS/IX - the last logical unit number
accessed; it is always zero
following a successful START,
BEGIN, or END

13 undefined

14 2 format string error

6-15 M6262A

TCB (TASK CONTROL BLOCK) TCB (TASK CONTROL BLOCK)
(cont'd) (cont'd)

Examples 0008 REM TCB(1l2) returns an integer
0010 A=TCB(12)
0012 REM Convert it first to a string
0020 AS=BIN(A,4)
0022 REM decompose the string
0030 S1=ASC(AS$(1)>
0040 S2=ASC(AS$(2))
0050 S3=ASC(AS(3))
0060 S4=ASC(AS$<4))
0070 REM print the results

0100 PRINT "This is the number returned by TCB(12): ", A
0200 PRINT "The string looks like this: ", HTA (AS)
0300 PRINT "in final ""fourtuple"" form : ",

Sl,",",82,",",83,",",84
The following example displays the line number where the
error occurred.

01000 INPUT (0,ERR=8000)Q@(5,10)'CL', A

08000 PRINT @<0,21),'CL',"YOU GOOFED. ERR = ",
ERR, "AT LINE:",TCB(5); INPUT *; RETRY

M6262A 6-16

TIM (TIME OF DAY)

Format

Description

Examples

TIM

TIM (TIME OF DAY)

The TIM variable contains the current system time in hours

and fractional hours.
system,

TIM can be translated into hours,

in the example below.

00100
00200
00300
00400
00500

LET
LET
LET
LET
LET

T=TIM

H=INT (T)

S1=INT (FPT(T) *3600)
M=INT (S1/60)
S=S51-M*60

where H=hours, M=minutes, S=seconds

>PRINT TIM

6-17

It is continually updated by the
and can be set by using the SETTIME instruction.

minutes and seconds,

as

M6262A

TRX (TRANSLATION FILE NAME) TRX (TRANSLATION FILE NAME)

Format TRX
Description The TRX system variable contains the full path name of the
translation file currently in use. If the translation fa-

cility has not been started by the SETTRANS directive, or
if translation has been turned off with ENDTRANS, then TRX
will return the NULL string.

Example >PRINT TRX
TRANSFILE.ID

>100 As = TRX

6-18 M5262A

UNT (LOWEST AVAILABLE UNIT) UNT (LOWEST AVAILABLE UNIT)

Format UNT

Description The UNT variable returns the lowest logical unit number,
or I/0 channel number, that is available.

A CALL'ed program can use UNT to open a device, without
knowing which devices have been opened by the CALL'ing
program. For example, OPEN(UNT) "name".

Examples >END

>PRINT UNT

1

>OPEN (1) "P1"
>PRINT UNT

2

>OPEN (3)"P3"
>PRINT UNT

2

>OPEN (2)"p2"
>PRINT UNT

4

>CLOSE (1)
>PRINT UNT

1

The following example opens a device without knowing which
devices are already open.

OPEN (UNT) "name"

6-19 M5262A

WHO (ACCOUNT NAME) WHO (ACCOUNT NAME)

Format WHO

Description The WHO system variable contains the task's account name.
This is the account name of the user who logged on to the
terminal on which the variable is used.

BOSS/IX

>PRINT WHO
franz

BOSS/VS

>PRINT WHO
LAN.MST

M6262A 6-20

NOTES

6-21 M5262A

M6262A

NOTES

6-22

SECTION 7 — INPUT/OUTPUT OPTIONS

OVERVIEW Input/Output options are used to modify the execution of
an I/0 directive. Specified within the parentheses im-
mediately following the file number, these optional para-
meters can cause branching within the program . They can
also set up controls to override system defaults, specify
a record to be accessed, specify the range of the
permitted length of a variable, and more.

Multiple I/O options in a statement are separated by com-—
mas.

7-1 M6262A

DOM= (DUPLICATE OR MISSING KEY) DOM= (DUPLICATE OR MISSING KEY)

Format DOM= stno

Description The DOM= option transfers control to the specified state-
ment if the key specified in an INPUT, READ, or REMOVE op-
eration is not found in the file, or if the key specified
m a PRINT or a WRITE operation is already in the file.

If a DOM= option is not used in an INPUT, READ, or REMOVE
statement, an ERROR 11, MISSING OR DUPLICATE KEY, is gen-
erated when the specified key is not found.

If a DOM= option is not used in a PRINT or WRITE state-

ment, the record in the file which corresponds to the
specified key is replaced with the new record.

Examples 00100 READ (2,KEY=AS$)RS
If the KEY is not in the file, an ERROR 11 occurs.

00100 READ (2,KEY=AS$,DOM=500)R$

If the KEY is not in the file, the DOM= branch is
taken, and ERR=11 is set.

00100 WRITE (2,KEY=AS)RS
If the KEY is in the file, old data is overwritten.
00100 WRITE (2,KEY=AS$,DOM=500)RS$
If the KEY is in the file, the DOM= branch is taken,
and ERR=11 is set. 0ld data is not overwritten.
00100 WRITE (2,KEY=A$,DOM=500,ERR=400)RS
If the KEY is not in the file, control passes to state-

ment 500, but any other error causes branching to
statement 400.

M6262A 7-2

END= (BRANCH AT END OF FILE) END= (BRANCH AT END OF FILE)

Format END= stno

Description The END= option transfers program control to the specified
statement number when the end of file is reached. If an
END= option is not used, an ERROR 2, END OF FILE, 1is gen-—
erated.

End-of-file is reached when the program tries to read

beyond the last record in the file. It is also reached
when the program tries to write to a record number that is
higher than those specified for the file (See IND=), for

example, 1f the program tries to write record 7 to a
SERIAL file that contains only three records, or if the
program tries to write record 7 to an INDEXED file that
was defined to contain only three records.

Examples 00200 READ (1,END=0500)AS

00200 LET K$=KEY (1, END=9000)

7-3 M6262A

ERR= (ERROR EXIT) ERR= (ERROR EXIT)

Format ERR= stno

Description The ERR= option transfers program control to the specified
statement number if an error occurs while executing the
statement.

For the statement containing it, the ERR= option overrides
a SETERR statement. Specific error control clauses, such
as END= and DOM=, override an ERR= option.

With the exception of ERROR 126 (CTRL+Y KEY USED) and

ERROR 127 (ESCAPE), errors greater than 99 are not proc-
essed by an ERR= option; rather, they cause an immediate
exit to console mode, due to the nature of these errors.

Use of DOM= is recommended in statements performing INPUT,
READ, REMOVE, PRINT, or WRITE directives when the KEY= op-
tion is also used. When DOM= appears in the syntax before
ERR=, special branching occurs in cases of missing or
duplicate keys.

BB86 does not support multiple ERR= clauses in a single
BASIC statement. However, both BOSS/IX and BOSS/VS do
support this. If more than one ERR= option appears in a
statement, the final statement number is used

Example 00200 READ (1,ERR=0500)AS

M6262A 7-4

IND= (RECORD INDEX) IND= (RECORD INDEX)

Format IND= num-expr

where numeric-expr specifies the position of the record in
a file, relative to zero.

Description The IND= option specifies the index (record number) of the
record to be accessed by the input/output statement. The
first record in a file has an index of 0.

IND= can be used with Indexed, Direct, Sort and Serial
files, and with String files on BOSS/IX. Use of IND= when
reading Direct or Sort files speeds record access by using
the relative (to 0) record number. However, files are not
returned in key-sorted order when this method is used, and
records which have been deleted may be read, with no in-
dication that they are no longer wvalid.

IND= is not supported for multi-keyed files, and an at-
tempt to use it generates a run-time error.

If IND= is used in a CLOSE directive, it can have the
values 0, 1, 2 or 9. These are used when closing a unit
to the half-inch tape device. These numbers cause the
following actions:

0 - Rewinds tape to load point.

1 - Rewinds tape to load point and takes tape off-line.

2 — Rewinds tape to load point. If CLOSE is preceded

by a WRITE RECORD, 2 file marks are written to

tape.

9 - Writes 2 file marks to tape, then rewinds the tape.

Example 00200 READ (1, IND=10)

7-5 M6262A

IOL= (IOLIST STATEMENT) IOL= (IOLIST STATEMENT)

Format IOL= stno

Description The IOL= option specifies the statement number of the
IOLIST to be used. Refer to the IOLIST directive for
details.

Examples 00100 IOLIST AS,B,C,IOL=0200

00200 IOLIST D,E
00300 READ (1,KEY=A$)IOL=0100

00400 PRINT (7)IOL=0100

M6262A 7-6

KEY (ACCESS KEY IN FILE) KEY (ACCESS KEY IN FILE)

Format KEY= str-expr

Description This option specifies the key of the record to be accessed
by the input/output statement containing the KEY= option.

The KEY= clause is only allowed on DIRECT files and on
input operations to multi-key files. Using KEY= on any

other file types or a multi-key WRITE/PRINT will cause an
ERROR=13.

When reading a Multi-Keyed file using the KEY= clause, one
may specify the searching of any field which is either
PRIMARY, ALTKEY, or DUPKEY (that is, anything but NOKEY) .
For example, one may say, "read the record whose key in
keyset Fl# is 'Jones'" by using the following clause:

KEY=F1l#="Jones"

Of course, it is also permissible to have the key value
in a string variable and use this clause:

KEY=F1#=STRINGS

If the variable name matches the field name (except for
the # at the end of the field name), certain short cuts

may be taken. The following examples are equivalent:

KEY=F1#=F1$
KEY=#=F1$
KEY=#F1$

These five examples will only work if field Fl# is of type
S, C, or X, but not N (numeric). If the field is of type
N, then the following examples will work, with the last
three being identical in effect:

KEY=F1#=-987.33
KEY=F1#=PAYMENT
KEY=F1#=F1
KEY=#=F1
KEY=#F1

It is also acceptable not to specify the keyset, in which
case the PRIMARY keyset is used. Here are two examples:

KEY="Jones"
KEY=-987.33

7-7 M6262A

KEY (ACCESS KEY IN FILE) KEY (ACCESS KEY IN FILE)
(cont'd) (cont 'd)

If one does not use the KEY= clause, then the "next"
record is read. Since different keysets place different
ordering on the records, the keyset which is used to find
the “next” record is the last keyset which was previously
used in a KEY= clause, whether that previous KEY= clause
was in a REMOVE statement or in a READ statement (or
variant such as EXTRACT or READ RECORD) . If no KEY=
clause has been used for this logical unit since it was
opened, then the PRIMARY keyset is used for ordering pur-
poses on sequential reads.

For more information, refer to Appendix B.

Examples 00500 READ (1,KEY=AS)XS$

00500 WRITE (1,KEY=STR(A:"00000"))A,BS

M6262A 7-8

LEN= (LENGTH OF VARIABLE) LEN= (LENGTH OF VARIABLE)

Format LEN= min,max

where min and max are, respectively, the minimum and maxi-
mum allowable lengths of the variable.

Description The LEN= option specifies the inclusive range for the
length of a variable. The minimum length must be less
than or equal to maximum length.

If the length of the variable is beyond the specified
range, an ERROR 48, INVALID INPUT, results.

The LEN= option is only allowed on input operations. It

may not be used in an IOLIST directive, and it may not ap-
pear on output operations.

Example 00100 INPUT (0,ERR=0300)AS$: (LEN=2,3)

00300 IF ERR=48 THEN GOTO 8000 ELSE GOTO 7000

7-9 M6262A

RETAIN (RETAIN BUFFER) RETAIN (RETAIN BUFFER)

Format

Description

Example

M6262A

RETAIN

A RETAIN clause is used with the PACK, PRINT, READ and
WRITE directives to specify how the retain buffer is to be
used.

A retain buffer is associated with each channel opened to
a file or device. The buffer can hold one record. EX-
TRACT, FIND, INPUT, READ and PACK directives with the
RETAIN option, and the PACK directive without the option
place data into or modify the data currently in the retain
buffer. WRITE and PRINT with the RETAIN option and UNPACK
retrieve data from the retain buffer.

0100 WRITE (1,RETAIN)

See appendix B for further examples of RETAIN. Note that
it may be used on any type of file, not just multi-key
files.

SBQ= (SEQUENTIAL FILE NUMBER) SBQ= (SEQUENTIAL FILE NUMBER)

Format SEQ= int-expr
Description The SEQ= option is used only for OPEN'ing the 1/2-inch
tape device. The numeric expression specifies where the

tape is to be positioned upon opening, as follows:
SEQ= 0 positions the tape at Beginning of Tape
SEQ= 1 positions the tape just after the first filemark

SEQ= n positions the tape just after the nth filemark

Examples OPEN (1, SEQ=3) "RO"

Positions the tape Jjust after the third filemark.

7-11 M6262A

SIZ= (INPUT SIZE) SIZ= (INPUT SIZE)
Format SIZ= int-expr
Description This option specifies the maximum number of characters
that can be input by the INPUT statement containing the
SIZ= option. If the maximum number of characters is
entered, input is ended, even if neither the <RETURN> nor
any Control Bar key (<CTL-I> through <CTL-IV>) is pressed.

The CTL variable is set to five (5) if input is terminated
due to a SIZ= option.

Example 0700 INPUT <0,SIz=1)AS$

M6262A 7-12

TBL= (TRANSLATION TABLE) TBL= (TRANSLATION TABLE)

Format TBL= stno
Description This option specifies the number of the TABLE statement to
be used to translate data . The statement number specified

must contain a TABLE statement. Refer to the TABLE direc-—
tive for more details.

Examples 00100 READ (1, TBL=2000)AS

00100 WRITE (2,TBL=5000)AS$,B

M6262A

TIM= (SET TIME OUT) TIM= (SET TIME OUT)

Format TIM= num—-expr

Description The TIM= option specifies the number of seconds allowed
for completion of input. After that interval has passed,
an ERROR 0 is generated. There is no default time out
for keyboard input, i.e., if TIM= is not specified, the
operation never times out. "TIM=0" returns almost immedi-
ately.

Both BOSS/IX and BOSS/VS systems wait in tenths of sec-
onds.

Example 00100 INPUT (0,ERR=0500,TIM=60.4)"NAME",AS

Allows 60.4 seconds for input; otherwise, control
passes to statement 500.

M6262A 7-14

NOTES

7-15 M6262A

M6262A

NOTES

SECTION 8 - MNEMONICS

OVERVIEW Mnemonics are easily remembered names for standard opera-
tions. These operations are generally the equivalents of
ESCAPE sequences, used to access special features of input
and output devices. Since the escape sequences required
to access these features are device specific, Business
BASIC provides mnemonics to give a uniform interface to
them. System drivers handle the translation of the

mnemonics to the sequences required by each device.

Most mnemonics specify characteristics of the output pro-
duced by printers and terminals. For instance, mnemonics
are provided for changing the character pitch on printers,
switching between bold and normal display intensity on
terminals, and for locating the cursor or print head on
terminals and printers. A few mnemonics condition the way
the operating system intervenes on input and output opera-
tions. For instance, mnemonics are provided to tell the
operating system to stop processing mnemonics, or to dis-
card buffered keystrokes.

Mnemonics are transmitted as data, and so are subject to
TBL= translation.

Mnemonic Format Most mnemonics consist of two alphabetic characters en-
closed by single quotation marks. A few mnemonics have
longer names and cursor/print head positioning mnemonics
are not enclosed in quotation marks.

In general, the mnemonic is inserted at the point where
the stated operation is desired. For example:

0100 PRINT @(35,5), AS, 'LF', BS

In this example the 'LF' mnemonic is used to perform a
line feed on the user's terminal after printing the value
of AS at character position 35 on line 5. 1If the mnemonic
is inserted in the statement immediately following the
PRINT directive, the line feed occurs prior to printing
the value of AS.

Mnemonics can be used as string expressions. When so
used, they are evaluated to their internal codes, then
passed to the terminal driver. This feature allows
mnemonics to be assigned to BASIC variables. For example,
the contents of an application display screen can be as-—

signed to a variable. For example:

8-1 M6262A

00200 SCREENS= 'CS'+'SB'+QU 2,5)+"1l. CUSTOMER NUMBER OR
00200:END: " + 'CE'+ @(3,5)+,'CL',+" "

00210 PRINT SCREENS

00220 INPUT @(37,5),A

VFU DEFINITION A Vertical Forms Unit (VFU) definition describes the page
length and vertical locations on a form. Specific
mnemonics are provided to define and use the VFU.

The 'SL' and 'EL' mnemonics are used to start and end
loading a VFU definition. The VFU definition is contained
in a string expression. The format for defining a VFU is:

'SL', <VFU-def.-string>, 'EL'

The length of the form (number of lines) is specified by
the length of the VFU definition string, with each charac-
ter in the string representing one line. If the length of
the string is 66 characters, then the form is 66 lines
long.

The character at each position in the VFU specification
string defines which, if any, slew channel is defined
there. If the character is "0", then no slew channel is
defined there. If the character is "1", then this is the
top of the form. The characters "2", "3", "4",6 "5m", "7yw,
"8" define slew channels 2, 3, 4, 5, 7, and 8, respective-
ly. The character "6" defines the line for a vertical
tab. Several lines can be specified for vertical tabs, or
channel 6.

For example:

'SL',"1002003060040600", "EL"

defines a VFU of 16 lines with the top of the form as the
first line, slew channel 2 on the fourth line, slew chan-
nel 3 on the seventh line, slew channel 4 on the twelfth

line, and vertical tabs on the ninth and fourteenth lines.

The mnemonics 'S2' through 'S8' can be used to slew to the
specified lines. 'S61 and 'VT' can both be used to slew
to the vertical tab lines.

SLEW performs a paper throw. Each SLEW mnemonic specifies
how far the paper will be fed before the next print is ex-
ecuted. A SLEW feeds the paper faster than a normal line
feed.

M6262A 8-2

MNEMONICS Table 8-1 lists the mnemonics supported by BB86, including

DESCRIPTIONS an abbreviated description. Following the table, full
descriptions are given for each mnemonic. The mnemonics
are grouped as Terminal Control, Printer Control and Oper-—
ating System Control mnemonics, and are described in al-
phabetic order in those groups.

Table 8-1. ALPHABETICAL LISTING OF MNEMONICS

MNEMONIC DESCRIPTTION

@ (x) Horizontal Position

@(x,vy) Horizontal and Vertical Position

'10" 10 Pitch

'16" 16 Pitch

'6L! Six Lines Per Inch

'8L" Eight Lines Per Inch

'B1" Sheet Feeder Bin 1 (BOSS/IX only)

'B2" Sheet Feeder Bin 1 (BOSS/IX only)

'BB' Begin Blink

'BE"’ Begin Echo

'BG' Begin Generating ERROR 29

'BI' Begin Input Transparency

'BO" Begin Output Transparency

'BR' Begin Reverse Video

'BS" Backspace

'BT' Begin Input Buffering

'BU" Begin Underline

'CE' Clear Screen to End of Page

'CF! Clear Foreground

'CH' Cursor Home

'CI' Clear Input Buffer

'CL! Clear Line

'CR' Carriage Return

'CS' Clear Screen

'DC! Delete Character

DN Down Cursor (BOSS/IX only)

'DACS' Disable Alternate Character Set

'DBLH' Double Height Print (BOSS/IX only)

'DBLW Double Width Print (BOSS/IX only)

'DPM' Reset to Default Character Printing Mode
(BOSS/IX only)

'EB' End Blink

'ER’ End Echo

'EG' End Generating ERROR 29

'ET End Input Transparency

'EL' End Load

'EO" End Output Transparency

'EP' Expanded Print

'EPM' Even Dot Plot Mode

'ER' End Reverse Video

'ES! Escape

'ET' End Input Buffering

8-3 M6262A

M6262A

Table 8-1. ALPHABETICAL LISTING OF MNEMONICS (cont'd)

MNEMONIC

IEUI
IFFI
IICI
IKLI
IKUI
'ID!
ILFI
'L
'ILT!
INLI
IOPI
'OUT (n) '

'PE!
IPGI
'PM!
'PS'
IRBI
'RC
IRTI
ISZI
VS3V
|S4l
IS5I
186'
IS7I
IS8I
'SACS'
ISBI
'SET6!
'SETS8'
'SF'
'SL'
ISNI
ISPI
'SPM1'!
'SpPM2!
'SPM3!
'SpM4!
'SPM5!
lssl
ISW]
I'I‘Ll
ITPI
ITRI
'TS!
IUPI
'"VT!
'WPM'

DESCRIPTION

End Underline
Form Feed

Insert Character
Keyboard Lock
Keyboard Unlock
Line Delete

Line Feed

Line Insert
Cursor Left (BOSS/IX only)
New Line
Overprint

Output (n) characters without translation

(BOSS/IX only)

End Protect

Print Screen

Plot Mode

Start Protect Mode

Ring Bell

Read Cursor

Cursor Right (BOSS/IX only)
Slew 2

Slew
Slew
Slew
Slew
Slew
Slew
Start Alternate Character Set
Start Background

Six LPI (BOSS/IX only)

Eight LPI (BOSS/IX only)
Start Foreground

Start Load
Screen narrow
Superscript
Set Print Mode
Set Print Mode
Set Print Mode
Set Print Mode
Set Print Mode
Subscript
Screen Wide
Transmit Line
Transmit Line Protected
Transmit Screen

Transmit Screen Protected
Cursor Up (BOSS/IX only)
Vertical Tab

Letter Quality Emulation Mode

O J oy O bW

g w N

(BOSS/IX only)

Terminal Control

@(x) -

@(X,Y)

'BB' -

IBRI —

lle —

IBUI —

'CE' -

'CF' -

Horizontal Position

- Horizontal

Begin Blink

The cursor is positioned at column X on the current line.
For terminals, all characters on the screen between the
current horizontal position and the new X position are
blanked out.

and Vertical Position

The cursor is positioned at column X and line Y.

The text following this mnemonic is displayed in blink
mode.

Begin Reverse Video

Backspace

The text appears with a light background and dark print.

A destructive backspace is performed. The cursor moves
back one space and replaces the character with a space.

The remainder of the string is not shifted left.

Begin Underline

Clear Screen

All characters following the mnemonic are underlined for
that line or until 'EU', whichever comes first.

to End of Page

The screen is cleared from the current cursor position to
the bottom of the screen. Background mode is cancelled,
if it is in effect.

Clear Foreground

All the characters printed in Foreground Mode are replaced
with spaces. Background Mode is cancelled, if it is in
effect.

8-5 M6262A

chl —

ICLI —

"CR' -

lcsl —

'DC' -

'DN' -

IEBI —

'FR' -

M6262A

Cursor Home

The cursor is positioned at "home" (0,0).

Clear Line
All the characters from the cursor to the right-hand end
of the line are replaced with spaces. Background mode is
cancelled, if it is in effect.

Carriage Return

The cursor moves down one line and back to column zero.
Note that this operation code is not the same as the ASCII

character. (This is also a printer operation, for which
refer to the description below.)
Clear Screen
All characters are cleared from the screen; the cursor is
positioned at home (0,0); protect mode is reset to OFF;
and background mode is cancelled, if it is in effect.
Delete Character
The character at the cursor is deleted, and all characters
to the right of the cursor are moved one position to the
left. A space is written in the last position of the
field.
Cursor Down (BOSS/IX only)
The cursor moves down one line, retaining the same
horizontal position.
End Blink
Text blinking begun by 'BB' is cancelled. All following
text appears on the screen in a normal manner.

End Reverse Video

Text i1s no longer printed with light background - dark
print (begun by 'BR').

'EU' - End Underline
Text following is no longer printed with underlining
(begun by 'BU'").

'IC' - Insert Character
All the characters at and to the right of the cursor move
one space to the right. The next I/0 character appears in
the space at the cursor.

'KL' - Keyboard Lock
Transmission of data from the keyboard is halted. To
reset, use 'KU' or turn the terminal OFF/ON.

'KU' - Keyboard Unlock

Transmission of data from the keyboard is resumed.

'LD' - Line Delete
The line where the cursor is positioned is removed, all
lines below it scroll up one line, and a line of spaces 1is
printed at the bottom.

'LF' - Line Feed
A line feed (cursor moves down one line) and a carriage
return are executed.

'LI' - Line Insert
A blank line is inserted at the cursor position, all fol-
lowing lines scroll down one line, and the bottom line is
deleted.

'LT' - Left Cursor (BOSS/IX only)
The cursor moves one space to the left. This is a non-
destructive backspace that leaves the existing character
intact.

8-7 M6262A

'PE' - Protect End

'PG' - Print Screen

IPSI

'RB'

'RC

M6262A

Protection Mode ('PS') is cancelled.

Prints the contents of the screen, from the home position
up to but not including the cursor position, to the termi-
nal printer port. Trailing spaces and lines are not
transmitted.

— Protect Start

- Ring Bell

- Read Cursor

Display protection is initiated. The cursor is prevented
from entering a protected field (a field in background
mode), and screen scrolling is prohibited.

The terminal buzzer sounds.

Used with the INPUT directive, this mnemonic returns the
current cursor position coordinates as a two byte string.
The two bytes returned are hexadecimal values. Position
0,0 would be 2020 (20 hex = 32 decimal). The first byte
contains the vertical position plus 32 (dec), and the sec-
ond byte contains the horizontal position plus 32 (dec).
This mnemonic is useful when a screen must be restored
following some subroutine, such as a help text display.

>10 PRINT @(10,12),
>20 INPUT 'RC', AS
>30 PRINT ASC (AS$(1))-32,ASC(AS(2))-32
>RUN
12 10

WARNING
The 'RC' mnemonic also sends 'LF' to the screen.

If the cursor is on line 23, the screen will scroll
and the old line 0 is lost.

'RT'

*SB'

ISFI

ISNI

ISWI

*TL'

TP

'TR*

Cursor Right (BOSS/IX only)
The cursor moves one space to the right. This is a non-
destructive control, leaving existing characters intact.
Start Background
Background Mode 1is initiated. All subsequent text is dis-
tinguished from Foreground text, and may be controlled
separately. Background text is marked as protectable, but
protection does not begin.

Start Foreground

Foreground Mode is initiated. This is the normal
(default) I/0O mode.

Screen Normal

Sets the screen to normal, 80-column display mode.

Screen Wide

Sets the screen to wide, 132-column display mode.

Transmit Line
Transmits all unprotected data from the beginning of the
line through the cursor position.

Transmit Line Protected

Transmits all data, including protected fields, from the
beginning of the line through the cursor position.
Transmit Screen

All data displayed on the screen is placed into the
specified input variable. Example:

00120 INPUT 'TR', AS

AS contains everything that was displayed on the screen
from the home position to the cursor position.

8-9 M6262A

'TS' - Transmit Screen Protected
Transmits all data on the screen, including protected
fields, from the home position through the cursor posi-
tion.

'UP* - Cursor Up (BOSS/IX only)
The cursor moves up one space, retaining the same horizon-

tal position.

Printer Control The following mnemonics instruct the printer driver to
perform specific functions on printers.

@ (X) — Horizontal Position

The next data is printed at the horizontal position
specified by X. Printers will not accept a second verti-
cal coordinate.

'6L' - Six Lines Per Inch

The printer's lines per inch setting is overridden and set
to 6 lpi. This mnemonic stays in effect until the end of
the line. Lines per inch mnemonics cannot be mixed on a
line because each mnemonic causes the print line to be
flushed and the upcoming characters to be printed on the
next line.

'8L' - Eight Lines Per Inch

The printer's lines per inch setting is overridden and set
to 8 lpi. This mnemonic stays in effect until the end of
the line. Lines per inch mnemonics cannot be mixed on a
line because each mnemonic causes the print line to be
flushed and the upcoming characters to be printed on the
next line.

210" - 10 Pitch

The printer's characters per inch setting is overridden

and set to 10 cpi. This mnemonic stays in effect until
the end of the line. The current line is printed before
the mnemonic takes effect . Characters per inch mnemonics

cannot be mixed on a line.

M6262A 8-10

'16' - 16 Pitch

The printer's characters per inch setting is overridden

and set to 16 cpi. This mnemonic stays in effect until
the end of the line. The current line is printed before
the mnemonic takes effect. Characters per inch mnemonics

cannot be mixed on a line.

'Bl1' - Bin 1 (BOSS/IX
'B2' - Bin 2 only)

Paper from bin 1 (front bin) or bin 2 (back bin) of the
cut sheet feeder is fed into the printer. The application
must issue a form feed at the end of every page to cause
the paper to be moved into the out-tray.

'BU' - Begin Underline
The printer is set in underline mode. All data is under-
lined until 'EU' (end underline) mnemonic is encountered.

'CR' - Carriage Return

The printer head returns to the beginning of the line

(without a line feed) in order to perform underlines, etc.
Some printers do perform a line feed and carriage return.
This mnemonic depends upon how the printer is set up.

'DPM' - Reset to Default Character Printing Mode (BOSS/IX only)
This mnemonic causes the printer to be reset to its de-
fault character printing mode. The printer completes
printing the current line before returning to data proc-
essing mode.

'BACS' - Disable Alternate Character Set

This mnemonic selects the standard character set for the
printer. It is the complement of 'SACS'.

DBLH' - Double Height Print (BOSS/IX only)

This mnemonic has the effect of printing the characters,
for the current line only, at twice their normal height.
Note that this causes the page to have half the normal
number of lines.

8-11 M6262A

'DBLW' - Double Width Print (BOSS/IX only)

This mnemonic has the effect of printing all characters,
for that line only, at twice their normal width. Note
that this causes lines to have half their normal number of
characters. @ (x) positioning also positions the print
head at twice the column specified.

'EL' - End Load
On some types of printer, this mnemonic ends the loading
of the VFU (vertical format unit). See the instructions
for each printer.

'EP' - Expanded Print
The characters in the current line will be printed in ex-
panded print. For the 150-300 line printers 'EP' expands
the height to two spaces. For 120 line printers 'EP' ex-—
pands horizontally to two spaces per character.

'EPM' - Even Dot Plot Mode
This mnemonic prints dots on the even dot positions on a
print line. A line feed character terminates an even dot
plot line, but does not advance the paper. The 'PM'
mnemnonic prints on the odd dot positions on a print line.
'PM' must be used to advance the.paper.

'EU' - End Underline
This mnemonic ends underlining of text (refer to *BU'
above). The underlines are printed with the rest of the
line whenever the buffer is flushed.

'FF' - Form Feed

'LF* — Line Feed
'NL' - New Line

M6262A

This mnemonic advances the paper to the top of the next
page. The 'CS' (clear screen) terminal mnemonic also
causes a form feed.

These mnemonics are identical. Both cause the line to be
printed with the carriage return and line feed characters.

'OP' - Overprint

The previously printed line is followed by a carriage
return without advancing the paper. Thus the next line
may overprint the previous line. This feature is not sup-
ported on some printers.

'OUT' (n) - Output (BOSS/IX only)

This mnemonic causes the printer driver to output the next
n characters without translation. The next n characters
are simply placed into a buffer without translation. Note
that (n) must be specified. Form control is not disabled
by this mnemonic.

'PM' - Plot Mode (with line feed)

The 'PM' mnemonic enables use of the graphics capability
of the printer. The 'PM' must precede the graphics data

and the data must end with a return. Refer to the printer
manual for each printer for the actual hex codes for the
graphics.

When using the plot mode of mnemonics to print a bit pat-
tern, output transparency should be set. For example:

10 OPEN(1)"LP"
20 AS=STFS$
30 PRINT (1) 'PM','BO',AS,'EO'
40 CLOSE (1)

'RB' - Ring Bell
This mnemonic causes the buffers to be flushed and the
"rimg bell" code to be sent to the printer. A repeat fac-
tor may be specified for this mnemonic.

'Sn' - Slew n
Where n is a character 2 through 8, this mnemonic performs
a paper feed as defined by the VFU settings. Refer to the
description of VFU above.

'SACS' - Start Alternate Character Set

This mnemonic selects the printer's alternate character
set. All characters after this mnemonic are printed with
the alternate character set.

8-13 M6262A

'SB' - Start Background (normal print)

'SET6
'SETS8'

This mnemonic ends bold print mode (foreground, 'SE').
Foreground mode is automatically ended after each line.

— Set Printer to 6 Lines Per Inch (BOSS/IX
- Set Printer to 8 Lines Per Inch only)

These mnemonics cause the printer to output its data at 6
or 8 lines per inch. This remains in effect until changed
by the 'SET6' or 'SET8' mnemonic respectively. The cur-
rent line is printed before the change takes effect.
Lines cannot mix the number of lines per inch.

These mnemonics differ from '6L' and '8L* in that these
latter mnemonics are effective for only one line.

'SEF' - Start Foreground (bold print)

?SL' -

Start Load

This mnemonic causes printing to be in bold (darker)
print. This continues until the 'SB' mnemonic is en-—
countered or the end of the line, whichever comes first.

The electronic VFU (vertical print unit) is loaded. This
is only available on some printers. Refer to the discus-
sion of VFU at the beginning of this section.

'SP' - Superscript Print

M6262A

This mnemonic causes the printer to print the following
characters superscripted, up 1/4 of a line. It is also
used for terminating subscripting. For example:
"X",'SP',"Z",'SS'," + y",lSPl,llzll,lSSl," = Z",'SP',"Z"
will produce:
x2 4+ yZ = z2
Note that:
"2 2 2",'SS','CR""x +y = z"

will produce the same result except that the latter ex-
ample may use an extra 1/4 line.

'SPMx' — Select Print Mode x

There are five (5) 'SPMx' mnemonics, 'SPM1' through
'SPM5'. The print buffer is flushed before the print mode
is changed. The selected print mode remains in effect
until another 'SPMx' mnemonic, or the 'WPM' or 'DPM'
mnemonic is sent.

'SS' - Subscript

This mnemonic causes the printer to print the following
character subscripted, down 1/4 of a line. It is also
used to end subscripting. See the example above for the
'SP' mnemonic.

'VT* - Vertical Tab

Slew to channel 6. A repeat factor may be specified for
this mnemonic.

'WPM' - Word Processing Mode (BOSS/IX only)

This mnemonic causes the printer to enter letter quality
emulation mode. For most printers this causes a reduction
of print speed. The buffer is flushed before word proc-
essing mode is entered.

OS Control The mnemonics in this section direct the operating system
to perform certain functions which control how or whether
devices receive data. Specifically, most of these
mnemonics affect the processing of other mnemonics.

'BE' - Begin Echo

(Corresponds to 'EE'.) 'BE* requires the operating system
to begin transmitting input/output data to the VDT screen.

'BI' - Begin Input Transparency

(Corresponds to 'EI', End Input Transparency.) 'BI' will
start transparent input. Transparent input means that no
terminal services interpretation of any characters input
from the keyboard will be performed (i.e., certain termi-
nal commands, such as ESC, and CTL+X,Y,S, or Q, will not
be intercepted and executed).

8-15 M6262A

WARNING

There is NO terminator on inputs after execu-
tion of this mnemonic. All input is treated

as data including all terminators, the Xon and
Xoff characters, and the ESC key. This mnemonic
remains in effect on the terminal until an 'EI'
mnemonic is output to it or until the terminal
process 1is logged off.

'EG' - Begin Generating ERROR 29

'BO* - Begin Output

The generation of ERROR 29 (Undefined Mnemonic) 1is
restored (necessary to end the suppression begun by 'EG')

Transparency

(Corresponds to 'EO '.) 'BO' is a data Transparency
transfer mnemonic that disables all data control charac-—
ters and mnemonic sequences (except for 'EO '), causing all

data to be passed to the device without interference or

translation by the driver.

'BT' - Begin Input Buffering

(Corresponds to 'ET'.) 'BT' initiates the buffering proc-
ess, which allows an operator to input data without wait-
ing for prompts or input requests to appear on the VDT
screen. The buffer accumulates the data in sequence and
assigns it to each field as it appears.

'CI' - Clear Input Buffer
All data accumulated in the input buffer (see 'BT') is
cleared. This prevents data from being entered in the
wrong field after an interrupt has occurred. 'CI' should

'EE' - End Echo

M6262A

be used with error traps and verification routines.

(Corresponds to 'BE'.) The operating system is instructed
to stop sending I/0 data to the VDT screen. All data

input or output after 'EE' and before 'BE' will not appear
on the screen.

IEGI

lEol

'ES'

ET

End Generation of ERROR 29

The generation of ERROR 29 (Undefined Error 29
Mnemonic) is terminated.

End Output Transparency

The 'BO' mnemonic is cancelled, restoring the effective-
ness of control characters and mnemonic sequences. The
driver now intercepts and translates such commands being
passed to communication devices.

Escape

An escape character is sent to the device, which treats it
as a lead-in code. The next character defines an action
for the terminal.

End Input Buffering

Input buffering begun by 'BT' is cancelled, requiring the
operator to input data only as each prompt or request ap-
pears.

CAUTION

The mnemonics affecting input and output trans-
parency must be used with caution. The mnemon-—
ics involved are 'BI', 'EI', 'BO',and 'EO '. The
only mnemonics that are serviced during input or
output transparency are those that end the proc-
ess: 'EI' and 'EO '. All others are simply
passed as data without checking wvalidity. Ac-
cidentally executing input or output transpar-—
ency may "lock up" the terminal so that only the
resetting of the terminal will establish proper
operation.

8-17 M6262A

M6262A

NOTES

SECTION 9 - ERROR PROCESSING

INTRODUCTION This section discusses errors and error messages that oc-
casionally appear on the terminal screen. Also described
are the methods of error handling required to correct or
avoid an error situation.

Error conditions are classified into two types:
Catastrophic and Non-Catastrophic.

Non- Non-Catastrophic errors are those which do not cause
catastrophic damage to files or to the disk.
Errors

Non-Catastrophic errors should be placed under program
control through use of the ERR= and/or DOM= options, the
ERR variable, the ERR function, or the SETERR directive.
NOTE

The ERR variable always reflects the value of

the last error until a new error occurs or a

"reset" operation is executed (BEGIN, END, STOP,

CLEAR, LOAD OR RESET) .
When an error occurs, if the ERR= option has not been used
and no SETERR is in effect and a DOM= or END= branch is
not taken, an error message is displayed on the user ter-
minal in the following form:

'ERROR=nn : ERROR MESSAGE

where:

nn is a number identifying the type of error that has oc-
curred.

ERROR MESSAGE is a short message describing the error.

The statement causing the error is printed directly below
the error number and/or message, and the system enters

console mode.

The proper procedure is to correct the error as necessary,
then type "RUN" to continue.

Error If it is necessary to continue the program at a different
Processing statement, enter the following:
GOTO n

where n is the number of the statement to be executed.
Then enter RUN.

9-1 M6262A

Catastrophic
Errors

ERROR CODES

M6262A

The ERR (Code 1, Code 2, Code 3,...,Code n) function as-
sists in determining which error occured. The ERR func-
tion generates an integer which can be used in an ON/GO
statement to construct a multiple branch. Refer to the
ON/GOTO directive in Section 4.

Errors between 100 and 199 (excluding 126 and 127) and
ERROR 254 indicate a serious problem with either the
system itself, or with what the user is doing. In most
cases, correction of a 100 series error requires the in-
tervention of a service representative.

Following is a list of BASIC statements for which ERROR
100 diagnostics are issued:

SAVE (when defining a program file)
INDEXED

SERIAL

DIRECT

MULTI

PROGRAM

SORT

ERASE

WRITE OR WRITE RECORD (Direct file, and only if a new
key 1is created)

REMOVE

This subsection describes the causes of error codes gener-—
ated by the system . The error codes are listed in numeri-
cal order. The paragraph title for each code illustrates
the format in which the error code along with the message
appears on the terminal.

When an error message displays, locate the error and
review the list following that error until the cause of
the problem is found. 1In some cases, correcting action is
suggested, while in others, the procedure is obvious. For
example, an ERROR 21, INVALID STATEMENT NUMBER, results
from the statement

>LIST 99991
Correcting action in this case is the reentering of the

statement with the proper statement number, which cannot
be greater than 16000.

!ERROR=0 FILE/REOORD/DEVICE BUSY OR INACCESSIBLE

This error occurs (usually after a few seconds' delay)
when an attempt is made:

1.

10.

11.

To access a peripheral device (printer, tape, etc.)
that is not in the "ready" state. To correct, ready
the device being accessed, e.g., make sure the printer
is powered up and on-line.

To DISABLE a logical disk on which there is an open
file. To correct, close all OPEN files.

To DISABLE a directory which is already disabled.
First ENABLE the affected directory.

To ERASE an open file. Do an END on all active termi-
nals.

To access a record which has been extracted by another
user. To correct, release record from extract by one
of the following:

a. Perform another operation on the file which has
the record extracted (same user).

b. Enter END on all other active terminals.

To OPEN a file that has been locked by another user.
To correct, the file must be closed or unlocked by the
user who locked the file.

To LOCK a file already opened by another user. To
correct, the file must be closed by the user that
opened the file.

By a non-ghost task to write to a ghost task which has
not done an INPUT. To correct, synchronize the logic
so that complementary functions are always performed
together in ghost and non-ghost tasks trying to com-
municate.

A time-out has occurred between terminal entries where
the TIM= feature was set to some number of seconds.

To correct, either set TIM= to a larger value, or in-
struct the operator to be more prompt.

To START a ghost task which had already been started.

To START a terminal or ghost which has been opened by
another task.

9-3 M6262A

'ERROR=1 END OF RECORD

1ERROR=2 END OF FILE

M5262A

This error occurs when an attempt is made to

1.

This

READ a record with a missing field terminator. To
correct, check the possibility of attempting to read
more fields than have been written.

WRITE a record which would cause overflow of the

record size defined. The record size must allow for
field terminators. For example, if a file is defined
with a record size of 40, an attempt to WRITE to the
file with a single-field record of size 40 (or

greater) causes an ERROR 1 because of the field
terminator. To correct , reduce the size of the record
being written.

Execute any input or output statement which specifies
a number of variables greater than the number of field
terminators received.

WRITE beyond the end of file, when using the ISZ= op-
tion, and the last record's size is less than the ISZ=
value. This is the case if the ISZ= value is not an
integer divisor into the file size.

The user attempts a READ RECORD from the half-inch
tape device, RO, and the string variable is not big
enough to accommodate the size of the tape record.

NOTE

BB4 generated an ERROR 1 when an attempt was
made to print a string longer than the con-
figured line length of the printer. BB86 does
not generate an ERROR 1 in this case, but car-
ries the rest of the string over to the next
line(s) .

error occurs when an attempt is made:

To WRITE a record to a SERIAL file using an IND value
greater than the number of records already in the
file.

To READ/WRITE to a record using an IND value greater
than the total number of records defined. (This does
not apply to SERIAL files.) To correct, redefine the
IND of the READ/WRITE statement or enlarge the file.

3. To WRITE a greater number of records than are defined.

(This does not apply to SERIAL files.) To correct,
define a new file using a new name and with a number
of records greater than the current value. Then

transfer the data from the old file to the new one.

4. To READ sequentially past the highest indexed record
or the highest key. To trap this error, use the END=
option in the READ statement.

5. To use the KEY or IND function when the last record in
the file has been read. Use an END= option to trap
this error.

6. On SERIAL files, to READ or WRITE a record too large
to fit in the remaining file space.

7. To READ or WRITE a file opened with an ISZ= (BOSS/IX
only) beyond the last record of a file. ©No error is
given when attempting to READ or WRITE the last record
of the file, even if it is smaller than the ISZ=
value. To correct, adjust the ISZ= option.

8. By a non-ghost task to READ from a ghost task which is
not in output mode.

9. To print to a spool file which is filled.

10. To READ a Serial file when the last access was a
WRITE.

'ERROR=3 DISK READ ERROR

This error can indicate damage, drive misalignment, or
faulty disk data recording. The error can occur
repeatedly when attempts are made to access data from a
damaged disk. The error can also result from electronic
malfunctions, or from running the disk under extreme
temperatures.

There are essentially three reasons why an ERROR 3 occurs:

a. The record was incorrectly written on the disk.
b. The record was incorrectly READ from the disk.
C. A data error occurred in the disk controller.

If an ERROR 3 occurs, call a Service Representative.

9-5 M6262A

1ERROR=4 DISK NOT READY
This error occurs when an attempt is made to:

1. ENABLE a disk device when the device name to be
enabled is not defined for the system.

2. Use an inoperative disk drive unit. To avoid/correct
an ERROR 4 occurrence, do not use the inoperative disk
drive unit; have it repaired, or DISABLE the drive.

3. WRITE to a disk when the media or drive is in the READ

ONLY state (e.g., a floppy disk with the write protect

tab on).

4. Perform operations on a drive when the media are "not
ready" (e.g., a floppy disk is improperly installed or
missing) .

ERROR=5 PERIPHERAL DATA TRANSFER ERROR
This error occurs when:

1. A parity error occurs upon transmission to or from a
terminal. A persistent error is indicative of a
device malfunction.

2. An invalid character is read from an input-output
device. It can result from faulty storage media such
as a damaged diskette or device malfunction.

3. A remote printer has a protocol error, or the ACK/NAK
sequence 1is not correct due to transmission problems.

If an ERROR 5 repeatedly occurs, call a Service Represen-—
tative.

'ERROR=6 INVALID DISK DIRECTORY

This error occurs when the system detects an invalid
directory, or no directory, on an enabled disk or when a
disk or diskette is formatted incorrectly.

!ERROR=7 CORRUPTED FILE

(BOSS/IX only) This error occurs when an attempt is made
to access a corrupted file. It is usually caused by a
corrupted keyed file, although it may also be caused by a
corrupted non-keyed file. The File Repair Utility is pro-
vided to repair corrupted files.

9-6
M6262A

1ERROR=9 POWER FAILURE

(BOSS/IX only) Programs running on BOSS/IX systems will
not be managed during a power fail and cannot be restarted
from a power-fail condition. The system will not be able
to preserve the state of programs or open files. The
system does, however, attempt to preserve filesystem in-
tegrity by flushing all outstanding operations from the
buffer area to the disk prior to power-fail shutdown.

Nevertheless, there is a chance of file damage. Under
these conditions the system provides no power-fail error
messages.

'ERROR=10 ILLEGAL FILE NAME SIZE OR USAGE/ILLEGAL OVERLAID CALL
This error occurs when:

1. More than 128 characters on BOSS/IX or 52 characters
on BOSS/VS are specified as a file identification
field of a INDEXED, SERIAL, DIRECT, MULTI, PROGRAM,
SORT, OPEN, ERASE, SAVE, LOAD, CALL ADD or RUN state-
ment . (Each file directive specifies the exact file
name syntax to be followed.)

2. The argument of a KEY function is not included, or the
argument field is longer than the defined key size.
To correct, adjust the KEY clause's argument.

3. The file name, combined with the prefix or selected
directory name strings, exceeds the total allowable
length, which is 128 characters on BOSS/IX or 52
characters on BOSS/VS.

4. The file name size is zero ("") or greater than the
maximum file name length of 20 characters. An example
would be as follows: LOAD "" or LOAD

"MORETHANTWENTYCHARACTERS".
5. An attempt is made to overlay a CALL with no wvalid
calling program in memory.
'ERROR=11 MISSING OR DUPLICATE KEY
This error occurs when an attempt is made to access a
record of a Direct file using a KEY whose value is not

equal to the key defined for any record of the file.

After taking the DCM= option on a PRINT or WRITE state-—
ment, the ERR variable is set to 11.

9-17 M6262A

!ERROR=12 MISSING OR DUPLICATE FILE NAME/NON-CONFIGURED DEVICE

This error occurs when an attempt is made to:

1.

OPEN a disk data file using a file identification
field that has not been previously defined on one of
the selected directories by means of a DIRECT, IN-
DEXED, MULTI, PROGRAM, SORT, SERIAL, FILE or SAVE
statement.

ERASE a file that does not exist on the first direc-
tory in the current prefix list.

OPEN an input/output device not included in the con-
figuration.

Define a disk data file or program by means of a
DIRECT, INDEXED, MULTI, SERIAL, PROGRAM, SORT or SAVE
statement when a file of the same name already exists
in the working directory.

Define a disk data file or program by means of a
DIRECT, INDEXED, MULTI, SERIAL, PROGRAM, SORT or SAVE
statement where the file name is the same as the name
reserved for a system device (i.e., LP, Pi, P2...P7,
TO, Tl...TF, MO, M1, GO...G3, SY).

ADD or DROP a program that is not found.
Perform a BOSS/IX LIB directive with an entry point

which is not found in the currently loaded BASIC 1li-
brary.

'ERROR=13 IMPROPER FILE OR DEVICE ACCESS

M6262A

This error occurs when an attempt is made to

1.

READ or INPUT on an output-only device such as a
printer.

WRITE or PRINT on an input-only device.

WRITE or PRINT to a Direct file when the statement
does not include an IND or KEY option and the subject
record has not been extracted.

READ or INPUT from a disk data file using a statement
that contains a constant or mnemonic. E.g.:

OPEN (1) "FILE"
READ (1) "ENTER NAME: ",AS

10.

11.

12.

WRITE to Serial file, if the file is not locked.

Access a ghost program from a non-ghost program (or
vice versa) when both programs are in the same mode
(i.e., input or output) at the same time.

ADD a non-program file to the public memory.

DROP a peripheral device or a nonresident program.
Attempt a KEY function or KEY= clause on a non-keyed
file (that is, other than a Direct, Sort or Multi-

keyed file).

RELEASE a task-tied (OPEN) ghost task or a task not
currently started.

Access tape with a BASIC input-output instruction
which is not in RECORD mode (e.g., WRITE rather than
WRITE RECORD) .

Attempt an IND function of IND= clause on a multi-key
file.

!ERROR=14 IMPROPER FILE OR DEVICE USAGE

This error occurs when an attempt is made to:

1.

OPEN a device that is in use (already OPEN).

OPEN a disk file or device using a file/device number
that is currently being used by that user.

START with a non-ghost task ID.

Perform an input/output operation using a file/device
number that was not previously used in an OPEN state-
ment by the same user.

Define a disk data file, or program , by means of a
DIRECT, INDEXED, MULTI, SERIAL, PROGRAM, SORT or SAVE
statement on a disk directory that was previously dis-—
abled.

LOCK a file that has not been opened by the same user.

LOCK a file that has already been locked by the same
user.

UNLOCK a file that has not been locked, or which has
been opened with an ISZ= option on a BOSS/IX system.

9-9 M6262A

10.

11.

ADDR a program already resident in the public program-—
ming memory area on a BOSS/IX system.

START a device (rather than a terminal or ghost task).

RELEASE a task that has not been started.

'ERROR=15 DISK SPACE ALLOCATION ERRORS

This error occurs when:

'ERROR=16 DISK OR PUBLIC

This

No additional disk space is available for file growth
or creation.

On a BOSS/IX system, a START of a ghost task is at-
tempted, and there is no disk space available for the
pipe required by the ghost task.

An attempt is made to remove a record from a Direct
file, and there is not enough space on disk to add to
the file which keeps track of removed keys.
PROGRAMMING DIRECTORY IS FULL

error occurs on a BOSS/IX system when:

An attempt is made to define a disk data file or pro-
gram using a DIRECT, INDEXED, MULTI, PROGRAM, SORT,
FILE, SERIAL, or SAVE statement when the capacity of
the disk directory has been reached. To correct,

ERASE unneeded data files and/or programs.

There is an overflow in the public programming
memory. To correct, DROP unneeded public programs.

!ERROR=17 INVALID PARAMETER/NON-CONFIGURED DISK

This

1.

M6262A

error occurs when an attempt is made to:

Use a nonexistent directory in a SAVE , PROGRAM, IN-
DEXED, SERIAL, MULTI, DIRECT, SORT, FILE, ENABLE, or
DISABLE statement.

ADD, SAVE, LOAD or RUN a non-program file.

LIST to anything other than an Indexed or Serial file
or a device.

MERGE from anything other than an Indexed or Serial
file on a BOSS/IX system.

10.

VMERGE from anything other than a String file.

Use AND, IOR or XOR functions with different length
arguments.

Execute a FILE statement with bad file parameters.
SAVE, without parameters, a null program area.

Specify ten or more directories for the PREFIX direc-—
tive on a BOSS/IX system.

Illegal field usage on a multi-key file, such as writ-
ing to a composite field or reading a numeric value
from a string field.

'ERROR=18 ILLEGAL CONTROL OPERATION

This error occurs when an attempt is made to

1.

DROP a program that is busy or has not been ADDR'ed on
a BOSS/IX system.

SAVE a program that is in public memory on a BOSS/IX
system

SAVE to an OPEN file on a BOSS/IX system.

Access an encrypted program (LIST, SAVE, PGM function,
etc.) on a BOSS/IX system.

READ from a file for which the user has no read
permission.

WRITE to a file for which the user has no write
permission.

!ERROR=19 INVALID PROGRAM SIZE

This error occurs when an attempt is made to:

1.

On a BOSS/IX system, SAVE a program that consists of a
greater number of bytes than specified for the program
in the length field of the PROGRAM or SAVE statement
used to define the program file.

LOAD or RUN a program with insufficient data space.

LOAD, RUN, CALL, ADDR, or ADDE an empty program file.

9-11 M6262A

'ERROR=20 STATEMENT SYNTAX

ERROR 20 is a general catch-all error for the compiler.
Illegal punctuation, nonexistent or misspelled directives
and incorrect syntax are just some of the causes of an
ERROR 20.

In addition to compiler errors, several other situations
can cause an ERROR 20. This error can occur when an at-—-
tempt is made to:

1.

M6262A

Execute a statement that has a format mask with il-
legal characters.

Execute an EDIT statement that has an illegal para-
meter option.

Enter or execute an I/0 statement that contains a key
function. For example:

>0010 PRINT (1,KEY=KS)

Use a second argument on a CRC or HSH function whose
length is not equal to 2.

Execute a user-defined function reference (FNx) where
the FNx argument list does not match the DEF argument
list.

Enter a number which is out of range, such as
DIM AS(-1) or DIM AS$(33000).

A distinction is made between entering a number that

is out of range and executing a number that is out of
range. The following enters a number that is out of

range:

>0010 DIM AS$(33000)

The following attempts to execute a number that is out
of range:

>0010 LET A=33000
>0020 DIM AS(A)
>RUN

The first example results in an ERROR 20, whereas the
second results in an ERROR 41.

9-12

Enter an exponent that is equal to or greater than 63
or less than or equal to -63. For example,

>0100 LET A= .0004E63

results in an ERROR 20. Note that the number can be
re—-entered as .004E62 without generating an error.

The format string (FMT= clause) of a multi-key file is
not properly formed. See the TCB(14) for the position
of the error within FMT='s string.

'ERROR=21 INVALID STATEMENT NUMBER

This error occurs when an attempt is made to:

1.

Enter, during Console Mode operation, a statement
whose directive is preceded by a statement number
greater than 16000 or less than 1.

LIST or DELETE a statement number greater than 16000
or less than 1.

MERGE a statement whose directive is preceded by a
statement number greater than 16000 or less than 1.

Enter or execute an EDIT, GOSUB , GOTO or ON/GOTO
statement with a branch statement number greater than
16000 or less than 1.

Enter a statement that contains an IOL=, ERR=, TBL=,
DOM=, or END= which specifies a statement number

greater than 16000 or less than 1.

Execute an EDIT or DELETE statement on a non-existent
statement number.

Attempt to delete a non-existent statement by entering
its statement number in console mode.

Add to a nonexistent statement number by use of the
Console Mode editing feature,

On a BOSS/IX system , execute a CPL function on a text
string which has no statement number.

9-13 M6262A

1ERROR=23 MISSING VARIABLE/NON-DIMENSIONED STRING

!ERROR=24 DUPLICATE

'ERROR=25 UNDEFINED

!ERROR=26 INCORRECT

M6262A

This error occurs when an attempt is made to enter or ex-

ecute a statement whose structure implies the absence of a
variable, for example:

00010 *ERR 23
00010 FOR5=1T010

00010 *ERR 23
00010 FORITO

FUNCTION NAME

This error occurs when an attempt is made to establish a
user—defined function by means of a DEF statement using a
function name that has been previously defined.

FUNCTION

This error occurs where an attempt is made to execute a
statement containing a user—-defined function (FNA through
FNZ) that was not previously defined by a DEF statement in
the user's program , or which was defined for a different
function, e.g., FNA reference to a DEF FNB.

VARIABLE USAGE

This error occurs when an attempt is made to execute a
function of any kind where the argument is of an incorrect
mode, for example, where the argument is a string and
should be numeric, or where the argument is numeric and
should be string. The error occurs when an attempt is
made to:

1. Enter more than 14 digits, or enter a non-numeric
character at a terminal in response to an INPUT state-
ment whose expression field specifies a numeric value.

2. READ non-numeric data from a file into a numeric vari-
able. The error usually indicates a READ statement in
which the type and order of variables do not cor-
respond to the type and order of variables in the
write statement used to create the file.

3. Enter or execute a statement or function where the
type of variable (numeric or string) defined by the
argument is in disagreement with the type of variable
implied by the statement or function name.

4. Specify a string or string variable as an INDEX, or
specify a number or numeric variable as a KEY.

5. For compatibility with Level 4, entering a parameter
greater than 32767 generates an ERROR 26 if:

a. LEN= field is greater than 32767 in input
verification in an INPUT or READ

b. Increment to the POS function is greater than
32767

c. ON-GOTO numeric expression is greater than 32767
d. Size in PROGRAM statement is greater than 32767
6. Convert non-hexadecimal characters via the ATH func-
tion.
!ERROR=27 RETURN WITHOUT GOSUB/DELETE WITH ACTIVE GOSUB OR FOR/NEXT
This error occurs when an attempt is made to:

1. Execute a RETURN without a previously executed GOSUB.
This is indicative of an error in program logic.

2. Execute a RETRY without an ERROR branch resulting from
a SETERR or ERR=.

3. Execute an EXITTO with neither a GOSUB nor a FOR
statement previously executed.

4. DELETE or modify a statement in a program with an ac-—
tive FOR-NEXT or GOSUB-RETURN routine.
'ERROR=28 NEXT WITHOUT FOR
This error occurs when an attempt is made to execute a
NEXT without execution of a previous, corresponding FOR.

IERROR=29 INVALID MNEMONIC

This error occurs when an attempt is made to

1. Enter or execute a statement containing a mnemonic to
an inappropriate device; for example, PRINT 'CS' on a
printer.

9-15 M6262A

2.

3.

Execute an invalid positioning mnemonic, such as
"@(100,100)".

Execute an unrecognized mnemonic, such as 'ZZ'.

!ERROR=30 USER PROGRAM INCORRECT CHECKSUM

This error occurs when an attempt is made to:

1.

LOAD, CALL, LIST, ADDR or RUN a corrupted BASIC pro-
gram

Perform a LST function on an invalid string (BOSS/IX
only).

Run a program in which the interpreter detects invalid
or corrupt code (BOSS/IX only).
NOTE

On a BOSS/IX system, ERROR 30 is similar to the
ERROR 254, which occurs when an attempt is made

to SAVE a corrupted BASIC program . The ERROR
254, however, may indicate that the BOSS/IX in-
terpreter is corrupted , and so it was made a

separate error.

'ERROR=31 INSUFFICIENT MEMORY WITHIN TASK

This error occurs when an attempt is made to:

1.

M6262A

ENTER or MERGE a statement which, if added to the pro-
gram , would make the program too large to fit in the
available user area. To correct, see number 2 below.

EDIT an existing statement to increase its length to
the extent that the additional program area required
would make the program too large to fit in the avail-
able user area. To correct:

a. On a BOSS/IX system , SAVE the program , enlarge
the user area by using the START statement, LOAD
the program and continue; or

b. Split the program and add statements to initiate
overlay; or

c. Reduce the size of the existing program to pro-
vide space for the coding to be included.

Execute a program whose operation has filled the user
area . The specific action that caused the error is
usually the addition of a new variable or the length-
ending of an existing variable. In either case, it is
possible that the error was due solely to failure to
CLEAR the user data area prior to the execution of the
program.

Execute string manipulations within a program which

temporarily require more data area than is available.
After the error occurs, the data area is returned to
the size remaining prior to the string manipulation.

Enter a statement via a terminal keyboard when the
user area is almost full (this is a less common cause
for the error). In this instance, the error results
from the fact that all console mode keyboard entries
are stored in a buffer within the user area prior to
processing of the carriage return terminator. To
correct:

a. On a BOSS/IX system , enlarge the size of the
user area using the START command

b. CLEAR the data area (if possible) prior to ex-
ecution (or revision) of the program . If clear-
ing is not appropriate, select one or more un-—
necessary string variables of sufficient length
and set their values to null; or

c. On a BOSS/IX system , modify the program so that
less data is required (e.g. remove REM
statements) .

LOAD or ADDR a Program file that has non-valid data

Execute a CALL statement with insufficient data space
available to store the CALL stack information.

On a BOSS/VS system nest more than 256 FORs and
GOSUBs.

9-17 M5262A

!'ERROR=32 STACK OVERFLOW

This error occurs when internal storage for BASIC program
management has been exhausted . This seldom occurs, if
ever, and is due to a number of conditions, such as ex-—
treme expression complexity, an attempt to compile a
statement with a large number of parentheses or nested
functions, etc. It may also be caused by an IOLIST state-
ment that loops on itself. For example:

00010 PRINT IOL=0020

00020 IOLIST IOL=0030

00030 IOLIST IOL=0020

>RUN

!ERROR=32: STACK OVERFLOW
'ERROR=33 INSUFFICIENT MEMORY CAPACITY

On a BOSS/IX system , this error occurs when an attempt is
made to use memory that is not available. To correct:

1. Reduce the size of the user area requested by the
START statement.

2. RELEASE any terminals not in use.

3. Reduce the amount of memory reserved for the programs
and data of other users.

4. Reconfigure with a greater number of logical units.

If ERROR 33's appear on a regular basis, it is advisable
to purchase more memory.

'ERROR=34 VDT BUFFER OVERFLOW
This error is caused by the inability of the CPU to keep
up with the VDT transfer rate. To correct:

1. Reduce overall system loading, if possible, by
temporarily stopping other tasks.

2. Slow down input.

3. Design an application program such that INPUT state-—
ments are executed more frequently.

M6262A 9-18

!ERROR=35 COMPILER OUT OF MEMORY

On a BOSS/IX system, this error occurs when a statement is
entered and there is not enough memory to compile it. It
often occurs when a complex arithmetic or logical expres-
sion is entered. To correct repeated occurrences, use a
larger START size, or simplify the arithmetic or logical
expression.

!ERROR=36 CALL/ENTER VARIABLE MISMATCH

This error occurs when:

1. The number of variables or the mode of the variables
are not consistent between CALL and ENTER statements.

2. ENTER is executed more than once in a called program.
3. An attempt is made to execute ENTER in a main (not
public) program
'ERROR=38 ILLEGAL COMMAND IN A PUBLIC PROGRAM
This error occurs when an attempt is made to:
1. Execute one of the following commands in a public pro-

gram on a BOSS/IX system or in NO EXTEND mode on a
BOSS/VS system

EXECUTE LIST RUN ESCAPE
DELETE MERGE SAVE VMERGE

On a BOSS/VS system , EXTEND mode will flag only RUN.

2. Pass the same single variable more than once as an
argument to CALL; e.g., CALL "FILE", AS, AS.

3. Execute a START command in a public program on a

BOSS/IX system , when the START is for anything except
STARTING a ghost task.

'ERROR=39 ESCAPE IN PUBLIC PROGRAM

This error occurs when ESCAPE is pressed in a public pro-
gram on a BOSS/IX system

9-19 M6262A

1ERROR=40 NUMERIC VALUE OVERFLOW

!ERROR=41 INVALID INTEGER RANGE

M6262A

This error occurs when an attempt is made to execute a
statement involving arithmetic operations that result in
an absolute numeric value less than -109+1, or greater
than 1093-1. This excessive value can also result from an
attempt to divide by zero. When this error occurs, pre-
vious arithmetic processes should be checked to determine
is zero value divisor was generated.

This error occurs when an attempt is made to:

1. Enter or execute a statement using a negative value,
fractional value, or too large a value to identify the
following:

a. A file ID or device ID (maximum = 63)

b. The number of records in a file (maximum 233-1
records) .

c. The record size (maximum 32767 bytes).

d. An IND or ISZ= value (maximum 233-1).

e. At position @ (maximum 255).

f. A subscript (range = 1 to 32767).

g. A program size (maximum 32767 bytes).

h. A PRECISION (maximum 14).

i. An ON/GOTO statement whose expression field
results in a value greater than 32K.

j. On a BOSS/IX system, a power (%) (maximum 255).

k. A key size in a DIRECT or SORT statement
(maximum 56) .

1. An increment length in a PCS statement (maximum
32K) .

m. A START size where size is less than 10 or
greater than 65535.

n. A BIN function length (max=32767)

2. Execute the CHR code conversion function of a value
that is less than zero or greater than 255.

3. Dimension a numeric array that requires greater than
32K of memory (more than 4080 elements).

4. Enter a minimum or maximum LEN specification for input
verification which is greater than 32K.

5. Close file 0.

!ERROR=42 NONEXISTENT NUMERIC SUBSCRIPT

This error occurs when an attempt is made to

1. Execute a statement which contains an expression that
references an undefined numeric array or a non-
existent element of a dimensioned numeric array. To
correct:

a. Define the numeric array using a dimensioned
statement that includes the referenced element;
or

b. Revise the coding that causes generation of an
unexpectedly large variable that is used as the
subscript.

2. Use the POS function with a length field of zero.

'ERROR=43 INVALID FORMAT MASK SIZE

This error occurs when an attempt is made to execute a
statement that uses a format mask and the number being
passed through the mask has more significant digits to the
left of the decimal point than been provided for in

the format mask.

To correct, redefine the format mask allowing sufficient
positions to handle the larger number of digits.

!'ERROR=44 STEP SIZE OF ZERO

This error occurs during execution only and is caused by a
STEP value (in either constant or variable form) of zero
existing on the first execution of a FOR statement.
Changing of a variable STEP value to zero during the ex-
ecution of a FOR/NEXT loop does not cause an error, since
the STEP value is set at the beginning of execution of the
loop.

9-21 M6262A

1ERROR=45 INVALID STATEMENT USAGE

This error occurs when an attempt is made to:

1.

'ERROR=46 INVALID STRING

This

Enter a statement which is restricted to console mode
only, including a statement number (indicating program
mode) .

Enter a DELETE or LIST command that references de-
scending statement numbers.

Execute a statement with a TBL= option that references
a statement number which is not a TABLE statement.

Enter a statement (EXECUTE, FOR, NEXT, GOSUB, RETURN

or RETRY) in console mode which is available in pro-

gram mode only. (BOSS/VS allows FOR if it is followed
by NEXT on the same line.)

Enter a statement with an IOL= option that references
a statement which is not a valid IOLIST statement.

Execute a TBL function that references a statement
which is not a TABLE statement.

SIZE

error occurs when an attempt is made to

Execute the ASC function with a null argument (string
length = 0).

Enter other than eight characters with the SETDAY
statement.

Enter a SETDAY string expression in a format other
than mm/dd/yy.

!ERROR=47 SUBSTRING REFERENCE OUT OF RANGE

This

1.

M6262A

error occurs when an attempt is made to
Reference a string variable using subscript notation
that is not within the range of the length of that
variable. For example:
>AS$="ABCD"
>PRINT AS (2, 4)
'ERROR=47

Reference a substring of an undefined string.

9-22

'ERROR=48 INVALID INPUT
This error occurs when an attempt is made to

1. Input into a string variable when the branch list con-
ditions are not met, and/or the length of the data
input is outside the range specified in the LEN= spec-
ification.

2. Input a numeric value when the number and/or value
falls outside the range specified for verification in
the input statement, or has too many fractional
digits.

!ERROR=49 NON-TRANSLATABLE STATEMENT

On a BOSS/IX system , this error occurs when a non-
translatable statement is encountered during the transla-
tion of a program from one level to another.

'ERROR=50 GENERAL MEMORY ERROR

On a BOSS/IX system, this error indicates that a problem
exits in the operating system . If an ERROR 50 occurs,
call your service representative.

!ERROR=54 OPEN OF SERIAL FILE WITH INVALID HEADER

This error occurs on an attempt to open Serial file with
an invalid header.

!ERROR=68 BAD SECOND ARGUMENT TO CPL OR LST

(BOSS/IX only) This error occurs on an attempt to use ei-
ther the CPL or LST function with a second string argument
which is not in the correct format. Refer to the descrip-
tion of the CPL function in Section 10 for the correct
argument format.

'ERROR 69 MISSING VARIABLE ID

(BOSS/IX only) This error occurs upon use of the CPL
function when the first argument contains one or more var-
iable or user-defined functions whose ids are not describ-
ed by the eight tables which comprise the second argument.
Unlike ERROR 68, the second argument has the correct
Format and contains the required variable ID tables.

9-23 M6262A

When an ERROR 69 occurs, the third argument to the CPL
function, which is a string argument, is assigned to the
first variable or function ID in the first argument that
is not described in the second argument. This ID is null-
terminated (CHR(O)). If the id is that of a numeric
array, the first byte has hexadecimal 80 added to it.

If the third argument does not exist as a string variable,
or exists but is too short to accommodate the ID, either
an ERROR 70 or ERROR 71 is returned instead of ERROR 69.

'ERROR=70 THIRD ARGUMENT TO CPL FUNCTION IS NOT AN ACTIVE VARIABLE

(BOSS/IX only) This error occurs when the third argument
to the CPL function, which should be a string variable,
has a length of O. (Refer to the description of ERROR
69.)

'ERROR=71 THIRD ARGUMENT TO CPL FUNCTION IS NOT LONG ENOUGH

(BOSS/IX only) This error occurs when the third argument
to the CPL function is defined, but is not long enough to
accommodate the ID. For example, if the ID is 3 charac-
ters long, the third argument must have a length of at
least 4: 3 for the ID and 1 for the null terminator. The
maximum length required for the third argument is 12
bytes. (Refer to the description of ERROR 69.)

'ERROR=95 LAN ERROR
This error indicates that an error has occurred in the LAN
(Local Area Network) process. The TCB(1l2) variable con-
tains more information.

ERROR=98 SPOOLER ERROR
On a BOSS/IX system, this error indicates a spooler error.
The TCB (12) variable contains more information.

'ERROR=99 COMM ERROR

This error indicates a communications error. The TCB(12)
variable contains more information.

M6262A 9-24

!ERROR=103 CATASTROPHIC READ FAILURE/FILE POINTERS DAMAGED
A file (Direct or Sort) or directory has invalid key
pointers due to a critical write operation that could not
be completed due to a disk error. The task is forced into
console mode.

'ERROR=104 CATASTROPHIC DISK FAILURE/FILE POINTERS DAMAGED

An ERROR 104 occurs when an attempt is made to:

1. WRITE to a file when the disk drive is write pro-
tected.

2. WRITE to a disk when there is a hardware malfunction.

!'ERROR=123 CATASTROPHIC PARITY ERROR/FILE POINTERS DAMAGED

If a parity error occurs after a task begins updating a
Direct, Sort or Serial file (or the directory), but before
all WRITE operations are completed, the error is dis-—
played, and the task is placed in console mode.

'ERROR=124 PARITY ERROR
If a parity error occurs before a task begins updating a
file (or directory), or after the WRITE operations to the
file (or directory) have been completed, the error is dis-
played and the task is placed in console mode.

'ERROR=126 CTRL+Y KEY USED
Use of the <CTRL>+<Y> key sequence can be captured. This
is not a catastrophic error. If SETCTL is not in effect ,
<CTRL>+<Y> is ignored.

!ERROR=127 ESCAPE

The system variable ERR is set to the value 127 when the
ESCAPE key 1is pressed.

9-25 M6262A

'ERROR=254 PROGRAM SAVE ERROR

On a BOSS/IX system , the ERROR 254 occurs only during a
SAVE operation on a BASIC program, indicating that the
program cannot be converted to its SAVE'd format.

An ERROR 254 is usually caused by a corrupted BASIC pro-—
gram, as is ERROR 30. However, ERROR 254 may indicate
that the basic interpreter itself has become corrupted,
and so is listed as a separate error.

'ERROR=255 UNKNOWN ERROR

M6262A

An ERROR 255 indicates that an error has occurred that the
system does not recognize.

M5262A

NOTES

SECTION 10 - BOSS/IX SPECIFIC INSTRUCTIONS

This chapter describes special features of the BOSS/IX im-

plementation of Business BASIC. The first section de-
scribes the options available when accessing BASIC from
the command interpreter prompt. Following that, the

directives, functions, system variables and I/0 options
specific to the BOSS/IX implementation of BB86 are de-

scribed. The instructions are all listed in alphabetic
order.

To enter BASIC console mode from the command interpreter
mode, the user types "basic" following the prompt.
The command line format is:
usrname> basic {options} {command string}
The command string must be the last argument on the com-

mand line. The order of the options is unimportant, ex-—
cept that they must precede the command string.

—help This field displays the command line options for
or —h the BASIC command.
-nr (no release) If the —-nr option is used, the user

remains in the BASIC environment following com-—
pletion of the specified program and/or direc-
tive. If it is not used, the system exits BASIC
after running the specified program or direc-—

tives.

pgm= This option takes a quoted string argument con-
taining the name of a BASIC program. The program
is loaded and run immediately. (The -nr option

determines whether the user exits BASIC following
execution of the program.)

size= This option requires an integer argument

or s= specifying the task start size. Refer to the
START directive (Section 4) for further explana-
tion.

10-1 M6262A

Commnand String

M6262A

-e This parameter invokes the European format mask.
Format masks are described in section 2. The Eu-
ropean mask is identical except that commas and
decimal points are interchanged.

-q This parameter indicates “quit mode”. The text
of error messages is not displayed, nor is the
initial BASIC release level displayed upon enter-
ing BASIC. If a syntax error occurs, for exam-
ple, the system will display only:

'ERROR 20
The usual explanatory text is suppressed.

lib= This parameter takes a string argument specifying
a library of executable subroutines required by
the program being run. The full directory path
of the library should be specified.

trans= This parameter takes a string argument specifying
a translation file. The translation file pro-
vides for translation of file names. Refer to
the SETTRANS directive in Section 4 for a des-
cription of the translation file and process.

-X This option causes BASIC to ignore the <ESCAPE>
key, unless a SETESC is active. This prevents
the user from interrupting execution of the pro-
gram.

The command field is made up of a single string expres-
sion. The string, which may be within quotation marks (and
must be if it includes any spaces), contains any BASIC
directive permissible in console mode. Immediately upon
entering the BASIC console mode, the directive is ex-—
ecuted. For example:

usrname>basic 'AS="HELLO";PRINT AS'
The first thing that occurs upon entering BASIC, even be-
fore BASIC displays the "READY" message, is that "HELLO"
is assigned to AS and then is printed. Semicolons are

considered part of the string.

The command string must be the last option on the command
line.

10-2

Examples 1. usrname>basic -help
This option displays the menu of options.
2. usrname>basic pgm="PROGRAMNAME"

This option brings up the BASIC environment, loads the
specified program, runs the program, exits BASIC and
returns to the command interpreter.

3. usrname>basic pgm="ANOTHERPGM", 'A$="STRING EXPRES-—
SION",X=12;PRINT "ABOUT TO RUN ANOTHERPGM"'

This option list brings up BASIC, initializes the vari-
ables A$ and X as specified, prints the message "ABOUT
TO RUN ANOTHERPGM", loads and runs the program, and
exits BASIC returning to the command interpreter.

4. usrname>basic pgm="YETANOTHER" -gq -e -nr

This option line also brings up BASIC and runs the
named program. It also initiates quiet mode <-g) so
that error messages display only the error number, in-
vokes the European mask format (-e), and enters BASIC
console mode when the program ends (-nr). It does not
return to the command interpreter.

10-3 M6262A

INSTRUCTIONS The remainder of this section describes the directives,
functions, system variables and I/0O options specific to
the BOSS/IX implementation of BASIC.

M6262A 10-4

Format ! {unquoted BOSS/IX command line}

Description "I" is a directive to execute a BOSS/IX command while
remaining in BASIC. It can be used in either console or
program mode.

00010 PRINT "YOUR WORKING DIRECTORY IS",; Ipwd
00020 PRINT "THESE ARE THE FILES IN YOUR DIRECTORY"
00030 !'1s | p

>OPEN (1) "NEWNAME"
!ERROR12

>!copy OLDNAME NEWNAME
>OPEN (1) "NEWNAME"

>

! returns BOSS/IX errors to BASIC. For example, the fol-
lowing BOSS/IX command will generate a BOSS/IX error

-05, for missing file. BASIC translates this error to the
BASIC ERROR 12.

>lxyz

Can't execute 'xyz'. File does not exist.

'ERROR=12 : MISSING OR DUPLICATE NAME/NON-CONFIGURED
DEVICE

>

10-5 M6262A

ADDR
ADDE

Format

Description

Examples

M6262A

ADDR
ADDE

ADDR "prog-ID" {,ERR=stno}

ADDE "prog-ID" {,ERR=stno}

The ADDR and ADDE directives are used to add a program to
the shared area of main memory. The shared memory segment
identification is then passed to the BASIC interpreter for
use during a CALL, RUN or LOAD. This procedure insures

that only

one copy of a program is resident in main memory

at one time and reduces the search time required for ac-
cessing the called programs from disk.

ADDR

ADDE

00100 ADDE

00110 ADDR

Adds the specified program into memory. If the
program is to be called more than once, adding it
is recommended to reduce the time for each CALL.
The added program remains in memory until it is
DROP'ped by all tasks that ADDR'ed it.

All programs using such frequently called pro-
grams should ADDR the program. Otherwise a
directory search will be executed even though the
program then found to be already in memory.

An attempt to ADDR a program that has already
been added by the same task generates an ERROR
14.

Adds an error-handling program into memory. This
program is then called wherever an error occurs
that would cause BASIC to fall into console mode
and display an 1ERROR=nn message.

NOTE

An error handling program that has been
ADDE'ed runs automatically whenever an
error occurs that would normally cause the
system to drop into console mode. This
could cause an infinite loop if an error
occurs in the error handling program, it-
self. The only way to end the loop is to
kill the process fro, another terminal.

"YOUGOOFED"

"OFTENUSED"

10-6

CLASS= CLASS=
(SPECIFY PRINT JOB ATTRIBUTES) (SPECIFY PRINT JOB ATTRIBUTES)

Format CLASS= "str—expr"

where "str-expr" is the name of a print Jjob class.

Description The CLASS= option is used with the OPEN directive when
opening a printer to specify a class entry in the
"/etc/class" system file.

The "/etc/class" file contains print job class descrip-
tions, sets of commonly used print job parameters. Refer
to the BOSS/IX User Reference Manual for a complete de-
scription of Spooling and the class file.

The OPTS= option allows print job parameters to be
specified individually.

Example 00110 OPEN (1, CLASS="QUICK")"Lp"
This statement opens a channel to the printer "LP" and in-

vokes the print class "QUICK" for determining print Jjob
parameters.

10-7 M6262A

CPL
(COMPILE)

Format

Description

Examples

M6262A

CPL
(COMPILE)

CPL (str—expr {,str-expr} {,str-var} {,ERR=stno})

The CPL function compiles the string expression. The
string can contain any valid BASIC statement, with or
without a line number. The CPL function converts the
statement to a format that can be executed by the BASIC
executor. The first two hexadecimal bytes of the output
string contain the string length in binary format, provid-
ed the statement number is included.

In BOSS/IX BASIC, the compiled code for the same BASIC

variables can be different from one BASIC program to an-
other. If one BASIC program is taking the CPL of state-
ments from another BASIC program , the CPL will ordinarily
reflect the environment of the first program.

However, it is sometimes desirable to have the CPL reflect
the environment of the second, or target program . To
achieve this, CPL may take a second string argument. This
string contains information about the target program. The
information is in the format of the following eight
tables: the numeric id table, the numeric sort table, the
numeric offset table, the string id table, the string sort
table, the string offset table, the numeric location
table, and the string location table. These tables are
described in Appendix C.

>AS=CPL ("1 END")
>PRINT HTA (AS)
0005000143
| | |
| |
| | —-compiled "END"
|
| -statement number in
| binary

—length of compiled statement
binary

10-8

CPL
(COMPILE)
(cont'd)

CPL
(COMPILE)
(cont 'd)

In the following program , ARGS$ contains information from
the 8 tables described in Appendix C. If ARGS is not
specified , the CPL will use the tables currently in
memory, 1i.e, the tables from the last program that was
loaded and run. MISSINGS is the variable used to return
the id of the missing variable of user-defined function.
MISSINGS should be 12 characters long to assure enough
room for ids (11 characters plus the null terminator, for
a user—-defined function).

0005 DIM MISSINGS (12)

0010 LET ARGS$=$0000000F46495253545345434F4E440100000008000
0010:1000200000000A00040009000F000000040000000400000006000
0010:40004000A00080600153455448%

0020 LET BS$S=CPL("10 FIRST=SEOOND",ARGS,MISSINGS)

0030 LET CS$=CPL("10 PRINT FNSETH(7)",ARGS,MISSINGS)

0060 ARGS(5,1)="G"

0070 PRINT LST (BS,ARGS)

0080 ARGS (LEN (ARGS),1)="X"

0090 PRINT LST (C$,ARGS)

>RUN

0010 LET GIRST=SEOOND
0010 PRINT FENSETX(7)

10-9 M6262A

DROP DROP

Format DROP "prog—-ID" {,ERR=stno}
Description The DROP directive is the complement of the ADDR/ADDE
directive. It informs the system software that a particu-

lar program no longer needs to be kept in the public
memory. The program is actually removed only when all
tasks that have added the program have also dropped it.

Programs that are in use cannot be dropped

Example 1200 DROP "ALINE"?

Removes "ALINE" from memory.

M6262A 10-10

DSz DSz

(AVAILABLE USER MEMORY) (AVAILABLE USER MEMORY)
Format DSz
Description The DSZ variable contains the number of unused bytes

remaining in the user memory area

Example >PRINT DSZ

10-11
M6262A

EDIT EDIT

(LINE EDITOR) (LINE EDITOR)
Format EDIT stno {C[copy through wvalue]} {D[delete through value]}
{R[replace value]} {[insert valuel]}
where:

copy-through-value specifies the text in the original
statement that is to be kept unchanged.

delete-through-value specifies the text in the original
statement that is to be deleted.

replace-value is the new text replacing the existing text
on a character-by-character basis.

insert-value specifies the text to be inserted into the
original statement without replacing any of the exist-
ing characters.

Description The EDIT directive provides two methods of editing a line
of code: an on-screen editor, and a command directed
editor. The command directed editor is compatible with
the Level 4 BASIC editor. Both editing methods are avail-
able only in console mode, except that they may be used in
an EXECUTE statement.

The statement number is counted as part of the statement,
and so can be edited. 1In this case, a new statement is

added and the original statement remains unchanged

On—-Screen Editing

When EDIT is executed followed only by a statement number,
the statement is displayed at the bottom of the screen for
editing. The cursor can be moved in the line using the
control sequences listed below . Editing can be done in
either overstrike or insert mode. The control sequences
are:

<CTRL>+<A> Moves the cursor to the beginning of
the current line.

<CTRL>+<C> Exit the editor and abandon edits.
<CTRL>+<D> Deletes the character at the cursor.
<CTRL>+<E> Moves the cursor to the end of the cur-

rent line.

M6262A 10-12

EDIT EDIT

(LINE EDITOR) (LINE EDITOR)

(cont'd) (cont 'd)
<CTRL>+<F> Moves the cursor one character right.
<CTRL>+<H> Moves the cursor one character left.
<CTRL>+<I> Insert mode is activated.
<CTRL>+<N> Moves the cursor down one line.
<CTRL>+<0> Overstrike mode is activated.
<CTRL>+<P> Moves the cursor up one line.
<CTRL>+<T> Tab forward, moves the cursor eight

spaces to the right.
<CTRL>+<V> Exit editor and abandon changes.

<CTRL>+<W> Tab backward, moves the cursor eight
spaces to the left.

<DELETE> Deletes one character left.

<RETURN> Exit editor and write changes to
memory.

<ESCAPE> Exit editor and abandon changes.

Changes made to the text are made in memory only, and must
be SAVE'd to become permanent.

Command Directed Editor

In command directed editing, the changes to a line are
specified in the EDIT statement. The editor cursor is un-
derstood to begin at the beginning of the line. Copy,
Delete, Replace and Insert commands are given to locate
the cursor and modify the text.

The Copy command specifies the text to be kept unchanged.
The "copy-through" string specifies a pattern of charac-
ters to be matched in the statement being edited . The
cursor is then positioned at the first character following
the first matching sequence in the text, so this corr mand
acts as the forward cursor move. All characters are taken
literally in finding the match.

10-13 M6262A

EDIT EDIT
(LINE EDITOR) (LINE EDITOR)
(cont'd) (cont 'd)

The Delete command specifies the text to be deleted from
the statement. All characters from the cursor position
through the first text matching the "delete-through"
string are deleted. Text location by matching is done as
for the copy command.

The Replace command specifies characters entered over the

existing text, and so is equivalent to editing in over-
strike mode. Characters are overwritten one by one as the
cursor moves left to right.

The Insert command specifies characters to be entered at
the cursor position, and so corresponds to entering text
in insert mode. ©No text is deleted

All characters following the last character to be deleted ,
inserted or replaced are automatically copied even without
use of the copy option.

Examples LIST 200
00200 REM "THE ARK IS FULL. PLEASE LEAVE"
>EDIT 0200 C[E]JCI[E]JCI[E]IC[E]IR[USE TH][E SKIS"]

LIST 200
0200 REM "THE ARK IS FULL. PLEASE USE THE SKIS"

An alternate method is:

LIST 200

00200 REM "THE ARK IS FULL. PLEASE LEAVE"
>EDIT 0200 C[PLEASE]D["][USE THE SKIS"]
LIST 200

0200 REM "THE ARK IS FULL. PLEASE USE THE SKIS"

The series of "ClE]" characters locates the cursor past
the fourth "E". The "RJ[...]" command replaces the suc-
ceeding characters. Finally, the insert command appends

the last seven characters to the line.

>LIST 1200

01200 PRINT (1) "CHANGER"
>EDIT 1200 C["] DI[H]
LIST 1200

1200 PRINT (1) "ANGER"

MS262A 10-14

ERROR ERROR

Format ERROR

Description The ERROR directive displays the BASIC and BOSS/IX error
codes for the most recent error. If the error involved
only BASIC, and not BOSS/IX, only the BASIC error code is
displayed.

The ERR system variable contains the same information on
the BASIC error code, and the TCB(12) system variable con-
tains the same information on the BOSS/IX error code.

The error code field is cleared when you enter BASIC or
execute a BEGIN or CLEAR. The message is displayed but no
code numbers.

Examples >LQAD
'ERROR=20:STATEMENT SYNTAX ERROR
>ERROR
Basic error code: 20
System error code:
>OPEN (1) "MISSING"
IERROR=12:MISSING OR DUPLICATE NAME/NON-CONFIGURED DEVICE

>ERROR
Basic error code: 12
System error code: -5

10-15 M6262A

FID FID

(FILE INFORMATION) (FILE INFORMATION)
Format FID (fileno {,ERR=stno})
Description The FID function returns information associated with the

specified file number.

If the file number refers to a device or task, a two-,
three- or four-byte name is returned, e.g., "TO", "T12" or
"T123".

If the number refers to a disk file, information about the
file is returned as described in table 10-1. If the num-
ber is 0 and this is a batch job, "Tx" is returned

Example >OPEN (2)"AFILE"
>LET AS=FID(2)
>PRINT DEC (AS$(12,3))

Displays the maximum number of records for the file opened
on unit 2.

M6262A 10-16

FID FID
(FILE INFORMATION) (FILE INFORMATION)
(cont'd) (cont 'd)

Table 10-1. FID FORMAT

BYTES LENGTH DESCRIPTION
1-3 3 000000 (for compatibility with
other levels only)
4-9 6 File name (if six or fewer
characters; otherwise filled with
SFFS)
10 1 File type:

00 = Indexed file

$S01$ = Serial file

02 = Direct or Sort File
03 = Multi-keyed File

04 = Program file

07 = String file

14 = Protected BASIC Program
17 = Directory

11 1 Defined key size (always 0 for
multi-keyed files

12-14 3 Defined maximum number of records

15-16 2 Record size (=1 for STRING)

17-19 2 $000000S$ (for compatibility with
other levels only)

20 1 Disk number

21-24 4 Unused

25-28 4 Current number of records

29-31 3 Number of records in the initial
extent

32-34 3 Number of records in the growth
extent

35-162 6-127 Fully specified filename, e.g.,
/usr/name/XYZABC

10-17 M6262A

FILE

Format

Description

Examples

M5262A

FILE

FILE str—-expr

where string-expr is a 162-byte string with the same
Format as the FID function.

The FILE directive can be used to define any file type by
placing the parameters of the file into a string which has
the same format as the FID function (see FID function in
this section).

FILE may not reference a remote file.

00010 OPEN (1) "ADOOR"
00020 LET FS$=FID(1)
00030 CLOSE (1)

00040 ERASE "ADOOR"
00050 FILE F$

The above program first erases a file and then re-defines
it using the FILE statement on line 50. The file "ADOOR"

will be re-created as a new file having attributes identi-
cal to the erased "ADOOR" file. The newly created file is
empty, and does not necessarily occupy the same disk loca-
tion as did the original file.

10-18

IF/THEN/ELSE/FI

Format

Description

Example

IF/THEN/ELSE/FI
IF log-expr {THEN} statement-a {ELSE statement-b}
{FI}
where:
logical-expr = a relation between variables and/or values

using a relational operator sign (=, <, >, <=, >=
<>) or a logical compound of relations (AND, OR)

4

statement—-a and statement-b are BASIC statements.

The BB7 IF directive is exactly like the BB86 directive,
with the exception that BB7 accepts FI as the conditional
terminator in addition to the BB86 ENDIF terminator. FI
is accepted for compatibility with the 7.2 version of BB7.

Refer to the description of the IF directive in Section 4
for a complete description.

IF A = 1 THEN
IF B = 2 THEN PRINT "HERE"
FI

ELSE PRINT "DOWN UNDER"

10-19 M6262A

Isz= Isz=
(ACCESS FILE AS IF INDEXED) (ACCESS FILE AS IF INDEXED)

Format ISZ=recsz

where recsz is the redefined record size for a file.

Description The ISZ option allows any file to be accessed as if it
were an Indexed file with the record size specified.

ISZ= is used in conjunction with READ RECORD and WRITE
RECORD to handle multiple records or partial records
(e.g., KEY the tree areas for Sort, Direct or Program
files). The FID of a file opened with the ISZ= option
reflects the new record size and number of records, but
the disk directory is not affected.

The last record in a file opened with ISZ is short (less
than the ISZ size) if ISZ is not evenly divisible into the
file size, but an ERROR 2, END OF FILE, is not generated
until there is no data to be read in the file. An ERROR
1, END OF RECORD, 1is generated when the last record is
written if the record to be written is larger than the
last record size available.

A file opened with ISZ is implicitly locked from use by

other tasks.

Examples >OPEN (1,ISZ=2048) "BCOK"
>READ RECORD (1) AS
>PRINT HTA (AS)

M6262A 10-20

LST LST

(LIST) (LIST)

Format LST (str—expr {,str-expr} {,ERR=stno})

Description The LST function converts a compiled BASIC statement into
LIST format. The string expression must contain valid

compiled BASIC code, with a line number.

For BOSS/IX, the listed code for the same BASIC variables
can be different from one BASIC program to another. If
one BASIC program is taking the LST of statements from an-—
other BASIC program , the LST will ordinarily reflect the
environment of the first program

However, it is sometimes desirable to have the LST reflect
the environment of the second, or target program . To
achieve this goal, LST may take a second string parameter.
This string contains information about the target program.
The information is in the format of the numeric id and
non-numeric id tables described in Appendix E.

Example Refer to the description of the CPL function in this sec-
tion for an extended example, including an example with
two string arguments.

>10 PRINT AS

>PRINT LST(PGM(10))
>00010 PRINT AS

10-21 M6262A

LVL LVL

(RELEASE LEVEL) (RELEASE LEVEL)
Format LVL (num—-expr)
Description The LVL function returns information in the form of a

string expression containing the system software release
level. LVL(O) returns the BASIC release level; LVL(1)
returns the BOSS/IX release level.

LVL accepts any numeric argument valued from 0 to 15, but
only LVL(O) and LVL(l) are assigned values at this time.

>PRINT LVL (O)
EBS7308

>PRINT LVL (1)
EOS7310

M6262A 10-22

OPTS= OPTS=
(SPECIFY PRINTER ATTRIBUTES) (SPECIFY PRINTER ATTRIBUTES)
Format OPTS= str—-expr
where str-expr is a list of print Jjob attributes.
Description The OPTS= I/O option is used with the OPEN statement to
specify print job parameters.

The argument string has the same format as the parameter
list for the BOSS/IX "lpr" conmand, as described in the

BOSS/IX User Reference Manual, except that the parameter
name and value may be either upper or lower case.

The OPTS= parameter allows you to specify such spooling
features as priority, number of copies, and whether or not
to notify the user upon completion.

Example 00100 LET AS="alias=report copies=2 -notify"
00110 OPEN (7, OPTS=AS)"LP"
The OPEN statement specifies via the A$ variable that two

copies will be printed, and you will be notified when the
"report" job is finished.

10-23 M6262A

PFX PFX

(PREFIX LIST) (PREFIX LIST)
Format PFX
Description The PFX variable returns a string containing the most
recent prefix list. The prefix list is set by the PREFIX
directive, described in this section. It is a list of

directories to be searched in the event that a file is re-
quested without a full path name.

Example >PRINT PFX
/usr/username/work/memos/scheds

10-24 M6262A

PGM PGM

(PROGRAM) (PROGRAM)

Format PGM (stno)

Description The PGM function returns the compiled format of the desig-
nated statement number. If the statement number does not
exist in the program, the next higher statement is
returned.

If the program is encrypted, an ERROR 18 is generated.

If the statement number is zero, PGM returns the name of
the program currently being RUN. If PGM(O) occurs in a

CALLed program, it still supplies the name of the program
being RUN.

Examples 00100 LET AS$=PGM(10)

AS$ contains the compiled form of statement 10

00100 LET AS=LST(PGM(10))

AS$ contains the listed format of statement 10

10-25 M6262A

PREFIX

Format

Description

Examples

M6262A

PREFIX

PREFIX "prefix_ list"

where prefix_list is a list of directories, separated by
spaces.

The PREFIX directive defines a set of directories called a
prefix list. When searching for files, the system
restricts itself to the specific set of directories.

The first directory in this list becomes the user's work-
ing directory. If a file is referenced without a full
path name, it is first searched for in the working direc-
tory.

If the PREFIX list is the null string, the PREFIX list is
cleared.

When the user first enters BASIC, an implicit PREFIX is
executed; the user's prefix list is automatically set to

the current working directory.

Directory names in the prefix list are separated by
spaces. Up to 9 directories may be specified.

File creation and deletion operations are attempted only
in the first directory in the prefix list, the working
directory.
>PREFIX "/usr/fin/acct/rec"

Only the working directory is specified.
>AS=PFX + " /bin"

>PREFIX AS

Adds "/bin" to the current prefix list.

10-26

PROGRAM PROGRAM
Format PROGRAM "file ID", prog-size {,diskno}{,sectno}
{,init_alloc}{,add_alloc}{, ERR=stno}
where:

prog-size is the maximum size of the program in bytes
(cannot exceed 32,767 bytes)

diskno and sectno are ignored
Description The PROGRAM directive defines a program file. Program
files differ from data files in that they are accessed by
LOAD, SAVE, RUN or CALL, rather than READ or WRITE.
Examples >20 PROGRAM "NOVA", 2000,0,0,ERR=0100
Defines program "NOVA", with a maximum size of 2000 bytes
in the user's working directory. The disk and sector
specifications are ignored.
>PROGRAM "DALLAS", 3000

Defines a program named "DALLAS", with a maximum size of
3000 bytes, in the user's working directory.

10-27 M6262A

PUB PUB

(PUBLIC PROGRAMS) (PUBLIC PROGRAMS)
Format PUB (int-expr)
Description The PUB function returns a string representing all of the

programs in shared memory.
For compatibility with BB4, PUB accepts integers in the
range 0-15. Any number other than zero (0) returns a null

string.

The string contains 136 bytes for each public program. If
there are none, the string contains no bytes.

The 136 bytes returned for each public program have the
Format shown in Table 10-2.

Table 10-2. PUB(0) FORMAT

BYTE CONTENTS
1 ownership indicator:
0 = someone else
1 = current user
2 type of public program:

0 = called without use of ADDR or ADDE
1l = called with use of ADDR or ADDE

3-6 length of the program in bytes
7-136 fully qualified path name of the program
Example >XS$=PUB (0)

>FOR I = 7 TO LEN(X$) STEP 136; PRINT X$(I,128); NEXT I

This returns the full path name of each program in shared
memory.

M6262A 10-28

STRING STRING

Format STRING "file-ID" {,diskno}{,ERR=stno}

Description The STRING directive defines a string file. The disk num-
ber parameter is allowed but ignored.

Example STRING "ALONG", ERR=0100

10-29 M6262A

TSK

(DISPLAY CONFIGURED DEVICES)

Format

Description

Example

M6262A

TSK

TSK (int-expr)

TSK(O) returns information about each configured device
except disk. TSK(l) returns information about each termi-
nal that is logged on (whether it's running BASIC or not),
and about each ghost task that was started through BASIC.
Integer values 2 - 15 are also accepted for BB4 com-
patibility, but return the null string.

The string returned by TSK(O) and TSK(l) is a concatena-
tion of six-byte entries. Each entry is in the following

Format:

BYTES DESCRIPTION

1,2 Device name in ASCII (e.g., TO0,G1l)
3 Device status in ASCII:
0 = available
2 = 1in use (the status is always 2 for TSK(D)
4,5 Reserved for future use
6 Always the null byte ($00%)

00100 LET AS=TSK(0)

00110 FOR 1=1 TO LEN (AS$) STEP 6

00120 LET B$=AS(I,6)

00130 PRINT "DEVICE NAME IS: ",BS$(1,2)
00140 IF BS(3,1)="0" THEN PRINT "AVAILABLE"
00150 IF BS$(3,1)="2" THEN PRINT "IN USE"
00160 NEXT I

10-30

(DISPLAY CONFIGURED DEVICES)

VMERGE

Format

Description

Example

VMERGE "file—-ID"

VMERGE

The VMERGE command is used to retrieve a program in LIST

Format from a STRING file,
program currently in user program memory.

and to add that program to the

The statements of the two programs are merged together.

If both programs have a statement with the same statement

number,

in memory.

the statement in the string file replaces the one

The addition of a statement having a statement number that

does not exist in the current user program,

causes that

new statement to be inserted in numerical order according
to its statement number.

VMERGE cannot be used in a public program.

The following steps show the use of the VMERGE command:

1.

2.

3.

LOAD, then LIST the program to be VMERGEd

>LOAD "PGM1"
>LIST

>00010 REM "PGM1,
>00020 REM "PGMI,
>00030 REM "PGMI,

OPEN a String file
program to be merged in it in LISTed format:

>STRING "VED", 1
>OPEN (1) "VED"
>LIST (1)

>END

LINE 10"
LINE 20"
LINE 30"

("VED n)

and temporarily store the

LOAD, then LIST the program into which PGM1l is to be

merged (PGM2) :

>LOAD "PGM2"
>LIST

>00010 REM "PGM2,
>00020 REM "PGM2,
>00030 REM "PGM2,

10-31

LINE 10"
LINE 30"
LINE 40"

M6262A

VMERGE VMERGE
(cont'd) (cont'd)

4. Enter the VMERGE command:

>VMERGE "VED"

5. LIST the result:

>LIST

>00010 REM "PGMZ2, LINE 10"
>00020 REM "PGM1, LINE 20"
>00030 REM "PGM2, LINE 40"
>00040 REM "PGM2, LINE 40"

Statements 10 and 30 appear in both PGM1 and PGM2; the
VMERGEd program (PGM2) supersedes the program in user
memory (PGM1l), so statements 10 and 30 are retained from
PGM2.

Statement 20 was in PGM1 only, so it remains; statement 40
was from PGM2 only, so it is merged into user memory.

M6262A 10-32

NOTES

10-33 M6262A

NOTES

M6262A 10-34

OVERVIEW

MAGNET and NS
Subroutines

Find System

SECTION 11 - BOSS/VS SPECIFIC INSTRUCTIONS

This chapter describes directives, functions, system vari-
ables and I/0 options specific to the BOSS/VS implemen-—
tation of Business BASIC. The instructions are all listed
in alphabetic order.

The following single character synonyms are recognized on
BOSS/VS systems:

' = EDIT
? = PRINT
/ = LIST

BOSS/VS also allows "$" to be optionally appended to any
system string function or wvariable. These are:

AND, ATH, BIN, CHR, CRC, DAY, FID, GAP, HSH, HTA, IOR,
KEY, LRC, NOT, PRX, PNM, SCR, SPX, STR, SYS, WHO, XOR

For example, CHR(13) and CHR$(13) are both acceptable and
are equivalent.

BOSS/VS has an EXTEND/NOEXTEND mode. The EXTEND mode al-
lows all BOSS/VS BASIC syntax while NOEXTEND restricts the
syntax within programs (but not console mode commands) to
a subset which is compatible with BB3 AND BB4 versions of
Business BASIC. EXTEND mode is the default.

The following NS subroutine is supported through MAGNET in
order to maintain compatibility with previous releases for
applications using FTF to transfer files. It is used to
determine whether a specified system name is defined with-
in the network.

CALL ".NSPGM.%$6*NSFSY" , N, S$, DS

File/device number <-—————-—
System Name <-————————————————
System Attributes <-—————————————-—

The file/device number is any legal one which is not in
use. The system name is the name of a system to determine
whether it is in the network. If the system name is 018,
it is changed to the name of the local system . This can
be used to determine the name of the system on which the
application is running.

11-1 M6262A

Get System Names

M6262A

A null string returned in system attributes indicates the
system does not exist. If the system name does exist, the
returned string will not be null but may differ depending
on the system release level. On release 8.6A, it is a
10-byte hexadecimal string defining the subnet and station
number of the specified system. The first four bytes of
the string are the subnet number, and the last six bytes
are the station number.

CALL ".NSPGM.%$6*NSSYS", N, S$

Available file/device number <-——-— |
String of System Names <-—————————————-

This routing returns a string of all system names in the
network separated by a null (00).

11-2

Format ! {unquoted BOSS/VS command line}

"I" is a directive to execute a BOSS/VS command while

Description
remaining in BASIC. It can be used in either console or
program mode.
"I" is available in EXTEND mode only.
Examples 0100 !'RELEASE G31
!DATE
02/12/87

11-3 M6262A

ATN
(RADIAN ARCTANGENT)

Format

Description

Examples

M6262A

ATN
(RADIAN ARCTANGENT)

ATN (num-expr)

The ATN function returns the arctangent, in radians, of
the value specified. That is, ATN returns the size of the
angle (in radians) whose tangent is the value specified.

ATN is available in EXTEND mode only.

Note that:
2 pl radians = 360 degrees
1 radian = 75.296 degrees
tan(x) = sin(x)

>PRINT ATN (30)
1.54

11-4

ATTR= ATTR=

Format ATTR= str—expr

Description The BOSS/VS ATTR= I/O option (not to be confused with the
BB86 ATTR= option) 1is used with the OPEN directive to
specify Spooler (print Jjob) attributes.

"ATTR" is available in EXTEND mode only.

The string expression is a list of attributes each con-
sisting of the attribute name followed by "=" and the at-
tribute value. The format rules are the same as for the
BB86 ATTR= option (described in section 7), except that
the attribute names are different. Attribute names and
values may be entered in either upper or lower case.

The attributes that take a string expression as their
value are:

CLASS=, DATE=, TIME=, FORM=, ALIAS=

The attributes that take an integer expression as their
value are:

PRIORITY=, COPIES=, START=, END-, LINES=, SEPPAGES=

The attributes that take a T or F (true or false) value
are:

DELETE=, LOADFORMS=, SPOOLON=, NOTIFY=, REQUEUE=,
FORMFEED”, RAWMODE=, HIBIT=, PAGING=, NUMBERS=,

HEADINGS=, AUTOFF=, WAIT=
The attributes that take a file name as their value are:
PRINTDEF=, SPOOLNAME=

Refer to the BOSS/VS Spooler documentation for detailed
descriptions of these parameters.

If an attribute appears more than once in the 1list, the
last specification is used.

Examples 0200 OPEN(1,ATTR="CLASS=X ALIAS=ABC OOPIES=10") "Pi"
0210 OPEN(LPRT,CLASS="X",ATTR="FORM=BIGPAPER' ,) "LP"
0220 OPEN(3,ATTR="DELETE=F", CLASS="SYSTEM") "P3"

11-5 M6262A

CLASS

Format

Description

Example

M6262A

CLASS

CIASS=str—-expr

The CLASS= option is used in an OPEN statement for a
printer. It specifies the spooler form class to be used
for the print job output to the printer. BASIC allows the
name to be up to eight (8) characters.

"CLASS" is available in EXTEND mode only.

Aside from the ERR= option, the ordering of any of the new
spooler options or any of the old options (BLK=, SEQ=, and
TRK=) 1is immaterial.

The ERR= clause may be declared more than once and each
subsequent ERR= clause immediately overrides the previous
one. This is useful only when checking for expression
evaluation errors, e.g., CLASS=CHR<500) or COPIES=1/0.

The last ERR= clause 1is the one used if the OPEN fails for
most other reasons.

0210 OPEN (LPRT,CLASS="X",ATTR="PORM=BIGPAPER") "LP"

11-6

COPIES=

Format

Description

Example

COPIES=int-expr

The COPIES= option is used with
specify the number of copies to
copies can be set to any number

"COPIES" is available in EXTEND

COPIES=

the OPEN directive to
be printed. The number of
from 0 to 99.

mode only.

0010 OPEN(1, CLASS="X",COPIES=3)"LP"

11-7

M6262A

cos
(COSINE)

Format

Description

Example

M6262A

cos
(COSINE)

COS (num—expr)

The COS function returns the cosine of the wvalue

specified. The value specified must be an angle expressed
in radians.

Note that 1 radian = 57.296 degrees.
"COS" is available in EXTEND mode only.

>PRINT COS(1.1)
.45

11-8

DSz DSz

(AVAILABLE USER MEMDRY) (AVAILABLE USER MEMORY)
Format DSz
Description The DSZ variable always returns 32,767. It is provided

for compatibility with other levels of Business BASIC
(e.g., BOSS/IX).

Example >PRINT DSZ
32767

11-9 M6262A

EDIT EDIT

(LINE EDITOR) (LINE EDITOR)
Format EDIT stno {C[copy through wvalue]} {D[delete through value]}
{R[replace value]} {[insert valuel]}
where:

copy-through-value specifies the text in the original
statement that is to be kept unchanged.

delete-through-value specifies the text in the original
statement that is to be deleted.

replace-value is the new text replacing the existing text
on a character-by-character basis.

insert-value specifies the text to be inserted into the
original statement without replacing any of the exist-
ing characters.

Description The EDIT directive provides two methods for editing a line
of code: an on-screen editor, and a command directed
editor. The command directed editor is compatible with
the Level 4 BASIC editor. Both editing methods are avail-
able only in console mode, except that they may be used in
an EXECUTE statement.

The statement number is counted as part of the statement,
and so can be edited. In this case, a new statement is

added and the original statement remains unchanged.

On—-Screen Editing

When EDIT is executed followed only by a statement number,
the statement is displayed at the bottom of the screen for
editing. The cursor can be moved in the line using the
key sequences listed below. The key sequences are a sub-
set of those used by the BOSS/VS EDITOR.

On a High-Speed VDT, use the following keys. The NUM LOCK
must be turned OFF.

<BACKSPACE> Destructive backspace, moves the cursor
one character left and deletes the
character.

ARROW KEYS The arrow keys can be used to move the

cursor anywhere within the line being
edited. The -> arrow will append
spaces to the end of the statement.

M6262A 11-10

EDIT
(LINE EDITOR)
(cont'd)

<CTRL>t+ —>

<CTRL>+ <-

<TAB>

<DEL CHAR>

<SENT>

<INSERT LINE>

<INSERT SPACE>

<INSERT>

EDIT
(LINE EDITOR)
(cont'd)

Moves the cursor 5 characters right.
"->" is the right arrow on the keypad.

Moves the cursor 5 characters left.
"<-" is the left arrow on the keypad.

Moves the cursor 10 characters right.
Deletes the character at the cursor.

Deletes all characters from the cursor
position to the end of the line.

Toggles between Insert and Overstrike
text entry modes.

Moves cursor to the beginning of the
line.

Moves cursor to the end of the line.

On a serial terminal or a high-speed VDT, use the

following keys:

<CTRL>+<L>
or
<CTRL>+<X>
<CTRL>+<N>
or
<CTRL>+<Z>
<CTRL>+<K>
<CTRL>+<J>

<CTRL>+<W>

<CTRL>+<V>

<CTRL>+<X>

<CTRL>+<R>

Moves the cursor right one space.

Moves the cursor left one space.

Moves the cursor up one line.
Moves the cursor down one line.

Moves the cursor to the beginning of
the statement.

Moves the cursor to the end of the
statement.

Deletes the character at the cursor
position.

Deletes all characters from the cursor

position through the end of the state-
ment.

M6262A

EDIT EDIT

(LINE EDITOR) (LINE EDITOR)
(cont'd) (conf d)
<BACKSPACE> or Destructive backspace, moves cursor one
<CTRL>+<H> character left and deletes the charac-
ter.
<TAB> Moves the cursor right 10 characters.
<CTL-I> Moves the cursor to the end of the
line.
<CTL-II> Moves the cursor to the beginning of
the line.
<ESCAPE> Ends editing and abandons changes.
<RETURN> Ends editing and compiles changes.

Changes made to the text are made in memory only, and must
be SAVE'd to become permanent.

Command Directed Editor

In command directed editing, the changes to a line are
specified in the EDIT statement. The editor cursor is un-—
derstood to begin at the beginning of the line. Copy,
Delete, Replace and Insert commands are given to locate
the cursor and modify the text.

The Copy command specifies the text to be kept unchanged.
The "copy-through" string specifies a pattern of charac-
ters to be matched in the statement being edited. The
cursor is then positioned at the first character following
the first matching sequence in the text, so this command
acts as the forward cursor move. All characters are taken
literally in finding the match.

The Delete command specifies the text to be deleted from
the statement. All characters from the cursor position

through the first text matching the "delete-through"
string are deleted. Text location by matching is done as
for the copy command.

The Replace command specifies characters entered over the
existing text, and so is equivalent to editing in over-
strike mode. Characters are overwritten one by one as the
cursor moves left to right.

M6262A 11-12

EDIT EDIT
(LINE EDITOR) (LINE EDITOR)
(cont'd) (cont'd)

The Insert command specifies characters to be entered at
the cursor position, and so corresponds to entering text
in insert mode. No text is deleted.

All characters following the last character to be deleted,
inserted or replaced are automatically copied without use
of the copy option.

Examples LIST 200
00200 REM "THE ARK IS FULL. PLEASE LEAVE"
>EDIT 0200 C[E]JCI[E]JCI[E]C[E]IR[USE TH][E SKIS"]
LIST 200
0200 REM "THE ARK IS FULL. PLEASE USE THE SKIS"

An alternate method is:

LIST 200

00200 REM "THE ARK IS FULL. PLEASE LEAVE"
>EDIT 0200 C[PLEASE]D["][USE THE SKIS"]
LIST 200

0200 REM "THE ARK IS FULL. PLEASE USE THE SKIS"

The series of "C[E]" characters locates the cursor past
the fourth "E" The "R[...]" command replaces the succeed-
ing characters. Finally, the insert command appends the

last seven characters to the line.
>LIST 1200

01200 PRINT (1) "CHANGER"

>EDIT 1200 C["] DI[H]

LIST 1200
1200 PRINT (1) "ANGER"

11-13 M6262A

ERROR

Format

Description

Example

M6262A

ERROR

ERROR

The ERROR directive displays a description of the most
recent error. It is only available from console mode.
The description os a four-part numeric message, called a
"four-tuple", under which is displayed a descriptive text
message:

IERROR=P (N1, N2, N3, N4)

MESSAGE
where:
N1 = a number indicating the OS module detecting the
error.
N2 = a number indicating the function involved in the
error.
N3 = the BASIC error number that most closely describes
the error.
N4 = an internal number indicating the exact error condi-
tion.
P = a number, usually equal to N3.

Four-tuples with N1=28 (system dump condition) are not
generated by ERROR.

>ERROR
!ERROR=20 (15,0,20,0)

STATEMENT STRUCTURE (SYNTAX)

11-14

EXP
(EXPONENTIAL)

Format

Description

Example

EXP
(EXPCNETIAL)

EXP (num-expr)

Available in EXTEND mode only, the EXP function returns
the value of the natural logarithm, base e raised to the
specified power.

Note that e is approximately 2.718, but is 14 digits when
used with EXP.

EXP (10)
22026.47

11-15 M6262A

EXTEND

Format

Description

Example

EXTEND

EXTEND

The EXTEND directive sets EXTEND mode from NO EXTEND mode,
allowing longer (and more meaningful) variable names and
some additional functions. It also removes some testic-—
tions which are imposed on NO EXTEND mode in order to
maintain compatibility with other Basic Four systems.
EXTEND can only be used in console mode.

Programs SAVE'd in EXTEND mode cause BASIC to enter EXTEND
mode when they are LOAD'ed or RUN.

]EXTEND

>

Note that the console mode prompt changes from "]" to ">"
when in EXTEND mode.

11-16 M6262A

FID FID

(FILE INFORMATION) (FILE INFORMATION)
Format FID (fileno)
Description The FID function returns information associated with the

specified file number.

If the file number refers to a device or task, a two—,
three- or four-byte name is returned, e.g., "TO", "T12" or
"T123".

If the number refers to a disk file, information about the
file is returned as described in Table 11-1.

If the number is 0 and this is a batch job, information
about the input file for the job is returned as described
in Table 11-1.

Example >OPEN (2)"AFILE"

>LET AS=FID(2)
>PRINT AS$ (29, 52)

Displays the full file name of the file opened on channel
2.

11-17 M6262A

FID FID
(FILE INFORMATION) (FILE INFORMATION)
(cont'd) (cont'd)

Table 11-1. FID FORMAT

BYTES LENGTH DESCRIPTION
1-3 3 000000 (For BR4 conpatibility)
4-9 6 File name (if six or fewer charac-—

ters; otherwise filled with (SFFS$)

10 1 File type:
00 = Indexed File
01 = Serial File

02 = Direct or Sort File
$03% = Multi-keyed File
$04s$ = BASIC Program file

$07S$ = STRING File

14 = BASIC Protected Program File
17 = Directory
11 1 Defined key size of the primary key
12-14 3 Defined maximum number of records
15-16 2 Bytes per record (=1 for STRING)
17-19 3 $000000S$ (fOR bb4 compatibility)
20 1 Always 255
21-24 4 Unused
25-28 4 Current number of records
29-31 3 Number of records in initial extent
32-34 3 Number of records in growth extent
35-162 128 File name if greater than six char-

acters (including installation and
family name)

M6262A 11-18

GETEVINFO GETDEVINFO

Format FILE str-expr {,ERR=stno}

where str—expr is an 80 byte string with the same format
as returned by the FID function.

Description The FILE directive can be used to define any file type by
placing the parameters of the file into an 80-byte string.
This string has the same format as the FID function.

FILE cannot be used to recover a file, as it could on pre-
vious systems.

Example 10 OPEN (1) "ADOOR"
20 F$=FID(1)
30 CLOSE (1)
40 ERASE "ADOOR"
60 FILE F$

The following statement can be added to the above program
to change "ADOOR" to an indexed file:

50 LET F$(10,1)=S00$

11-19 M6262A

GEDEVINFO

Format

Description

M6262A

GETDEVINFO

CALL "GETDEVINFO", str-var

GETDEVINFO is a routine that returns a string containing
information about each of the systems's configured devices.
The string is composed of ten-byte substrings, one sub-
string per device, in the following format:

BYTES DESCRIPTION
1-5 Device name, padded with trailing blanks
6 Shared memory controller number and IMLC

line number (see SMC ID code below)
Device type code (see below)
Device status code
ISDC line number
Always O

O O 00 3

The lower 3 bits of the ISDC line number byte contain the
line number of the device if the device resides on an ISDC
controller. On a 4-way ISDC (MCS) controller, this is a 2
bit line number and bit 3 is zero. The 16-way ISDC con-—
troller is created as two consecutively addressed 8-way
ISDC controllers. For any other type of device, this
field is zero. The other 5 bits are reserved for future
use.

SMC ID Codes

Bits Description
0 Line number - A=0, B=1 on IMLC

1-6 Shared memory controller number, 0-63
7 Undefined

This is the same format returned by the DEVINFO task vari-
able.

If the device is on an ISDC controller, the shared memory
controller number field of this entry is valid and the
line number is zero. If the device is neither an IMLC nor
an ISDC, the entire SMC ID code is zero.

11-20

GETDEVINFO
(cont'd)

GETDEVINFO
(cont'd)

Device Type Codes

hex

00
01
02
03
04
05
06
07
08
09
OA
0B
ocC
0D
OE
OF
10
11
12
13
14
15
16
17
18
19

1A
1B
1cC
1D

1E
1F
20
21

2C
2D
2E

Code
dec

QO Jo U wWhNRE O

NNONNNNRE R R R R R R R R e
OB WNRPOW®OJIOU S WNRE O W

26
27
28
29

30
31
32
33

44
45
46

Description

No device

High speed vdt

Dataword II MDT in WP mode

Dataword II MDT in VDT emulation mode

Ghost terminal

7250 terminal

Transportable Batch (Communications (TBC)

TBC autodial unit

3270 running on IMLC

X.25 running on IMLC

Basic Four Interface system serial printer

Asynchronous driver

Asynchronous modem driver

7270 terminal

EVDT terminal

Unused

Basic Four Interface slave printer

Parallel matrix printer

Parallel back printer

MTR 1/2" Reel-to-reel tape drive

MTS 1/2" Streamer tape drive

ODT terminal

S/10 terminal

Special VDT device

Letter quality system serial printer

Reserved for DMP serial system printer
with IGP

DMP serial system printer

DMP parallel system printer

Industry Standard slave printer

Reserved for industry standard system serial
printer

Reserved for Letter quality slave printer

Reserved for future GCR tape drive

MCS 1/4" cartridge streamer tape drive

Reserved for tape devices
*

*

Reserved for tape devices

EDT terminal

Reserved for EDT terminal with monochrome
graphics

11-21 M6262A

GETDEVINFO GETDEVTNFO
(oont 'd) (cont'd)

Device Type Codes (cont'd)

Code Desciption
hex dec
2F 47 Reserved for IMLC diagnostic port
30 48 MAGNET socket
31 49 VDT/B
32 50 14" intelligent terminal
33 51 available
* *
* *
FF 255 available

Device Status Codes

Bit Description if bit is ON
0 Escape entered on terminal device
1 Device is open or in use
2 Device is not configured
3 Printer is dedicated
4 Terminal has a slave printer

5-7 Undefined

Example CALL "GETDEVTNFO",AS

M6262A 11-22

HELP HELP

Format HELP {str-expr}

where str-expr is a partial or complete BASIC keyword or a
BASIC error number.

Description The HELP directive provides on-line information for BASIC
directives, functions, and errors. It is only available
from console mode.

HELP without a string expression generates a list of the
commonly used BASIC directives and functions.

HELP with a (partial) unique BASIC keyword displays the
syntax for that keyword, and information concerning
functionality and parameters.

HELP with a non-unique partial BASIC keyword displays a
list of all BASIC keywords that match the expression.

HELP with an error number displays a message describing
the error.

Examples >HELP SE
SERIAL SETTRACE SETERR SETESC SETCTL

>HELP 20
STATEMENT SYNTAX

>HELP ATN

Arctangent function (in radians):
ATN (<num arg>)

11-23 M6262A

LOG
(NATURAL LOGARITHM)

Format

Description

Example

M6262A

LOG
(NATURAL LOGARITHM)

LOG (num—expr)

Available in EXTEND mode only, the LOG function returns
the natural logarithm (base e) of the number specified.
This is the power to which e (= 2.718, approximately) must
be raised to yield the specified value.

>PRINT LOG(10)
2.3

That is, 10 = e?3

11-24

MAX

MAX
(MAXIMUM ARGUMENT VALUE) (MAXIMUM ARGUMENT VALUE)
Format MAX (num-exprl, num-expr2 {,...,num-exprn})
Description Available in EXTEND mode only, the MAX function returns
the value of the numeric expressions with the greatest
value. The argument list must contain at least 2 argu-
ments.
Examples >LET A=10,B=20,C=30

>PRINT MAX(A,B,C)
30

11-25 M6262A

MIN MIN

(MINIMUM ARGUMENT VALUE) (MINIMUM ARGUMENT VALDE)
Format MIN (num-exprl, num-expr2 {,...,num-exprn})
Description Available in EXTEND mode only, the MIN function returns

the value of the numeric expressions with the least value.
The argument list must contain at least 2 arguments.

Examples >LET A=10,B=20,C=30
>PRINT MIN (A, B, C)
10

11-26 M6262A

NO EXTEND

Format

Description

Example

NO EXTEND

NOEXTEND
NO EXTEND

The NO EXTEND directive puts the system into NO EXTEND
mode from EXTEND mode. In NO EXTEND mode, the system is
compatible with the BB3 and BB4 systems.

In NO EXTEND mode, variable names are restricted to one
letter, optionally followed by a single digit (in some
cases, as in DEF FNx, only the letter is allowed). Also,
the set of directives is restricted to only what BB3 and
BB4 allowed, and certain operations, such as using EXECUTE
while in a CALL'ed program, are not allowed

The NO EXTEND directive can only be specified in console
mode. When NO EXTEND mode 1is specified, EXTEND mode vari-
ables and functions can be used in console mode, but they
cannot be used in a program

>NO EXTEND

]

Note that the console mode prompt changes from ">" to "]"
when in NO EXTEND mode.

11-27 M6262A

PFX PFX

(PREFIX LIST) (PREFIX LIST)
Format PEFX
Description The PFX system variable contains the user's current direc-—

tory prefix list.

BOSS/VS prefix names are separated by commas, always begin
and end with periods (.), and begin with optional instal-
lation qualifiers [enclosed in square brackets] and op-
tional family qualifiers (enclosed in brackets or
parentheses) .

PFX is available in EXTEND mode only.

Example >PRINT PFX
(family) .ACCTG.PETE.

M6262A 11-28

PRIORITY=

Format

Description

Example

PRIORITY=

PRIORITY=int-expr

The PRIORITY= I/O option is used when opening a channel to
a printer to specify the spooler priority of the print
job. The priority is given as an integer value in the
range of 0 (low, hold) to 9 (high).

"PRIORITY" is available in EXTEND mode only.

0100 OPEN(7,CLASS="ROOM",PRIORITY=5)"LP"

11-29 M6262A

RANDOMIZE

Format

Description

Examples

M6262A

RANDOMIZE

RANDOMIZE {num-expr}

RANDOMIZE is used to establish the seed for the BASIC

pseudo-random function RND.
"RANDOMIZE" is available in EXTEND mode only.

If RANDOMIZE is used without a numeric expression argu-
ment, the system sets the random seed to a random initial
value. If RANDOMIZE is followed by a numeric expression,
the random seed will be set to that value, allowing a pre-
vious "random" sequence to be repeated.

>PRINT RND

.9

>RANDOMIZE

>PRINT RND
.>RANDOMIZE 4

>PRINT RND, RND
0o .73

>RANDOMIZE 4

>PRINT RND, RND
0o .73

11-30

Format RND (num-expr)

Description The RND function returns a pseudo-random number.
"RND" is available in EXTEND mode only.

If RND is used alone, the value returned is equal to or
greater than 0 but less than 1. If RND is followed by a
numeric expression, in parentheses, the random number will
be generated and then multiplied by the numeric expression
before being returned.

The RANDOMIZE directive may be used before the RND func-
tion to establish a seed value, to guarantee a particular

random number sequence, or to insure its unpredictability.

Examples >PRINT RND
.14
>RANDOMIZE
>PRINT RND (10)
5.08

11-31 M6262A

SEQUENCE

Format

Description

Examples

M6262A

SEQUENCE

SEQ{UENCE} {stno}{,integer}

The SEQUENCE directive automatically supplies statement
numbers when entering a BASIC program.

If a statement number is specified, statement numbers are
supplied starting with that number. If no statement num-
ber is specified, line numbers begin at 100.

If an increment is specified, statement numbers are
stepped by that amount each time <RETURN> is pressed. If
no increment is specified, the step is 10.

To terminate automatic statement number generation, press
<RETURN> alone following the statement number.

SEQUENCE is only available in console mode.
>SEQUENCE
100 REM "SEQ DEMO"

110
>

11-32

SIN
(SINE)

Format

Description

Example

SIN
(SINE)

SIN (num—-expr)

The SIN function returns the sine of the value specified.
The value specified is taken as an angle expressed in
radians.

"SIN" is available in EXTEND mode only.

Note that 1 radian is approximately 57.296 degrees (i.e.,
pi / 3).

>PRINT SIN(1.1)

.89

11-33 M6262A

SPX
(SYSTEM PREFIX)

Format

Description

Example

M6262A

SPX
(SYTEM PREFIX)

SPX

The SPX variable returns the current system prefix list.
This prefix list is established for all users when the op-
erating system is installed, and provides the mechanism
for all users to access system files, such as the utili-
ties.

The format of the returned prefix string is identical to
that of the PFX system variable.
SPX is available in EXTEND mode only.

>PRINT SPX

results in an answer similar to:

() .R6A55.8YS., .R6A55.INST.

11-34

SOR SOR

Format SOR (num—-expr)

Description The SQR function returns the (positive) square root of the
non-negative number specified.

"SQOR" is available in EXTEND mode only.

Example PRINT SQR(16)
4

11-35 M6262A

Ssz
(SECTOR SIZE)

Format

Description

Example

M6262A

SS7Z (<disk number>)

Ssz
(SECTOR SIZE)

The SSZ variable contains the number of bytes in a sector

on the specified disk.

>PRINT SSZ
1024

(3)

This value 1is always 1024.

11-36

NOTES

11-37 M6262A

NOTES

M6262A 11-38

OVERVIEW

GHOST TASKS

Restrictions on
Ghost Programs

APPENDIX A - FEATURES OF THE BUSINESS BASIC
PROGRAMMING ENVIRONMENT

This appendix provides a more detailed description of some
of the programming features of the Business BASIC environ-
ment than that given in Chapter 2.

Described here are the following:

Ghost Tasking
Public Programming
Input Buffering
Field Protection

O O O O

Programming considerations on Multi-keyed files are cov-
ered in a later appendix.

A ghost task is a BASIC task which is not dependent on a
terminal for operation. It runs in the background, allow-—
ing all terminals to be used for other programs.

Ghost tasks are started by another task, or by the opera-
tor using a terminal. The START command is used to start
a ghost task. For example:

00010 START 32, "PRINT", "GO"

where "START 32" indicates 32 pages of user memory,
"PRINT" is the name of the program and "GO" is the name of
the ghost task that "PRINT" is to run as. The "32" need
not be specified on a BOSS/VS system, and will be ignored
if it is specified. Up to eight ghost tasks can be con-
figured on a BOSS/IX system (GO through G7), and up to 32
can be configured on a BOSS/VS system (GO through G31).
When a ghost task is finished, it should execute a RELEASE
statement. This releases the ghost task's memory for
reassignment to another task. The following code segment
causes a task to RELEASE itself if it is running as a
ghost task:

9900 LET FS$=FID(0)
9910 IF F$(1,1)="G" THEN RELEASE ELSE END

The following restrictions apply to ghost programs:
o The program ordinarily should not attempt to communi-

cate with a controlling terminal because none is
assigned; and

A-1 M6262A

Connunication
With a Ghost
Task

M6262A

o

A SETERR should be executed at the beginning of the
program to prevent an error which might cause a return
to console mode (which requires a terminal for output
of the error message, the ">", etc .).

It is possible to communicate with a ghost task from
another task, such as one controlling a VDT. The
procedures for reading from and writing to a running ghost
task are as follows:

Open the ghost

In order to successfully open a ghost task, it must
first have been started and cannot be opened by another

user at the same time. It must be opened on an
alternate channel (logical unit number).

READ/WRITE to the ghost

Once the ghost has been successfully opened, the user
can satisfy the task's input/output requests.

a. If the ghost task is trying to read from a
keyboard, the controlling task may only WRITE to
the ghost. An attempt to READ results in an
ERROR.

b. If the ghost task is trying to write to a VDT
screen, the controlling task may only READ from
the ghost. An attempt to write to the ghost
results in an ERROR. The ghost task halts on
every attempt to perform an input/output routine
to a VDT. It resumes when the I/0O request is
satisfied. TIf the ghost task is not attempting
any terminal I/0, the BASIC user hangs on every
attempt to access the ghost. The terminal
hangs last only ten seconds. If the ghost per-
forms the complementary I/0 operation prior to
the end of the timeout, the terminal hang ends
and the I/O operation continues.

CLOSE the ghost
Communication with the ghost task ends when the BASIC

user closes the channel to that ghost. Any other user
may now open the ghost.

The following is a running description of a ghost task
that halts on I/0 attempts and a BASIC procedure for
satisfying the requests.

The ghost task halts waiting to print to the terminal.

PUBLIC
PROGRAMMING

2. The BASIC user enters:
>OPEN (1) "GO"
>READRECORD (1)AS
>PRINT AS

3. The terminal then displays:

ENTER DATA HERE:

which satisfies the output directive.

4. The ghost task then halts on the statement, INPUT AS

5. The user then enters the following:
>WRITERECORD (1) "HI THERE!"

which satisfies the input directive.

6. The ghost task then halts on the next statement, PRINT

AS.
7. The user then enters:

>READRECORD (1)AS
>PRINT AS

8. The terminal displays:

HI THERE!

9. The user then closes the channel to the ghost task:

>CLOSE

The task continues running until it releases itself or is
reopened by another user. Ordinarily, the user will not
communicate directly with the ghost taks but will write a

program to do so.

Public programming is a feature available on the BOSS/IX
implementation of BB86, and is supported by a few specific
directives. It 1is also supported on BOSS/VS. It func-

tions in a similar manner on both systems except that

BOSS/VS performs ADDR and DROP automatically, and does not
support ADDE or PUB. This discussion pertains mainly to

BOSS/IX systems.

M6262A

Restrictions
on Public
Pro gramming

M6262A

The main objective of public programming is to reduce the
overall memory requirements of a system . This is done by
putting one copy of frequently used programs, utilities,
and subroutines into a common, mutually accessible place,
and allowing any task to "share" the stored code on a
reentrant basis.

For example, an order entry system with 10 VDTs, all doing
order entry and using 31 pages of memory per VDT for mul-
tiple copies of the necessary programs, would require 310
pages of memory. The same function might be accomplished
with public programming by using just one 22-page copy of
the program, plus data storage and overhead for each VDT
of 10 pages each, for a total of 100+22 = 122 pages.

The BOSS/IX operating system manages an area of main
memory for maintaining the public (shared) programs and

all open files or devices. The number of control block
entries available for this purpose is configurable, and
one entry is made for each active public program and each
open file or device. When all available control block
entries are used, any further attempts to open a file or
device or to call or add a public program results in an
ERROR 16. This problem does not occur with BOSS/VS.

The ADDR command can be used in BOSS/IX to LOAD the pro-
gram (make it a resident program). The DROP directive
deletes program entries from memory. The CALL, ENTER and
EXIT commands are used to run and terminate public pro-
grams.

For programs not entered and always in BOSS/VS, the CALL
command automatically executes an ADDR directive and adds
the program to the shared memory area (and drops it on
EXIT) .

The PGM and PSZ functions return information about the
calling program when executed in a public program

The following statements cannot be executed from a public
program in BOSS/IX. If an attempt is made to do so, an
ERROR 38 results. In BOSS/VS, only RUN is restricted.

EXECUTE MERGE ESCAPE
DELETE SAVE START
LIST RUN VMERGE

The trace flag is not altered by a public program , so the
statements can be traced. Statements that are traced

in public programs are displayed in the same manner as

the statements of the calling program

INPUT BUFFERING

Clearing the
Input Buffer

Escape Processing

TBL= Processing

Programs can be removed from public memory with use of the
DROP directive.

Input buffering allows an operator to enter input data on
the VDT keyboard without having to wait for a prompting
message or a request for input to appear on the display

during the execution of a Business BASIC program . The op-
erator can enter responses required by the program in the
sequence in which the data is requested. However, the

characters are not displayed until the statement request-
ing the data is executed by the processor.

The input buffer feature can be turned off for any task by
use of the 'ET' mnemonic, and can be reinitiated with the
'BT' mnemonic (see "MNEMONICS" in Chapter 8).

The "clear input" mnemonic, 'CI', provides a means to
insure that no unprocessed input is used at critical
prompt points in a program. The execution of 'CI' in a
statement clears all data in the input buffer. A state-
ment such as:

INPUT 'CI', "PLEASE REENTER DATE: ", AS

clears any data in the input buffer, prints the character
string, and waits for the operator to enter the field.
Subsequent inputs are then buffered as they were before
the execution of this mnemonic.

The operator can correct an error after a field terminator
has been buffered and before the field has been processed
(displayed) through use of the ESCAPE key. When the ESC
key is pressed, the input buffer is cleared and the termi-
nal is returned immediately to console mode, unless
fielded by SETESC.

If the ESCAPE occurred during the processing of the input
buffer, that portion of the input field which has been
moved to the program area is lost. When the RUN statement
is entered, processing begins at the beginning of the
statement which was interrupted by the ESCAPE. If the
program has a SETESC in effect , the buffer is cleared be-
fore executing the SETESC routine.

If a TBL= is in effect in an input statement, input buf-
fering is supported for that statement. The input buffer
is cleared in the initial execution of the statement, and
again at the end.

A-5 M6262A

Error
Processing

M6262A

Any error which returns the terminal to console mode
clears the input buffer. Buffering is in effect during
console mode. In program mode, only errors 5, 34, and 9
clear the input buffer when errors are fielded using ERR=
or SETERR.

Buffer overflow (ERROR 34) is flagged whenever one more
character is put into the input buffer than the buffer can
hold. The error is issued on the next I/O directive to
the terminal and is processed as other errors described in
this section.

When operator verification of system output is required,
the 'CI' mnemonic should be used on the input statement.
This forces the operator to wait for the system prompt be-
fore keyboard input is accepted. For example:

00090 PRINT <0,ERR=L010)"BALANCE=", A
00100 INPUT <0,ERR=100) "CORRECT? (YES/NO)", 'CI',
00100: D$: ("YES"=650, "NO"=725)

Input buffering can be disabled by use of the 'ET'
mnemonic.

00010 BEGIN
00020 SETERR 0500
00030 FOR X = 1 TO 20000
00040 REM "THIS LOOP IS TO SIMULATE PROCESSING TIME
00050 NEXT X
00060 INPUT "ENTER A:",A
00070 INPUT "ENTER B:",B
00080 INPUT "ENTER C:",C
00090 PRINT 'CI',
00100 INPUT "ENTER D:",D
00110 INPUT "ENTER E:",E
00120 PRINT "HERE ARE THE RESULTS:",A,B,C,D,E,
00200
00490 STOP
PRINT 'CI'
00500 ON ERR (26, 34) GOTO 0510, 0530, 0550
00510 PRINT "PROGRAM TERMINATED BECAUSE OF ERROR",
00510:ERR; STOP
00530 PRINT "ENTER ONLY NUMERIC DATA,"; WAIT 2; RETRY
00550 :PRINT "YOU HAVE EXCEEDED THE INPUT BUFFER AREA.
00550 :PLEASE REKEY DATA"; WAIT 2; RETRY
01000 END

The preceding program can be used as a sample method of
handling input buffer overflows and other errors that af-
fect the state of the input buffer. The loop beginning at
statement 30 is used as a timing loop to allow the filling
of the input buffer. To overflow the buffer, key in more
characters within the time of the loop.

M6262A

When statement 60 is executed (the first I/O statement en-
countered after the buffer overflow), an error branch oc-
curs at statement number 550 and the overflow error mes-—
sage 1is printed. The input buffer is cleared automatical-
ly, and all input accumulated in the buffer is cleared.

An example of the 'CI' mnemonic appears in statement 90.
This means that the buffer area is cleared at this point
and the next input line, "ENTER D:", always waits for a
response.

In the example, an ERROR 26 occurs if an alpha character
is entered. An error branch takes the program to state-
ment 530 and the error message is printed. Since error
processing does not clear the input buffer, input state-
ments after an error condition take their data from the
input buffer. Consequently, the 'CI' mnemonic should be
used in the statements processing the error (see Examples
2 and 3).

The following data tests the example:

Data Test 1

Input Result

1 (CR) 2 (CR) 3 (CR) ENTER A: 1
ENTER B: 2
ENTER C: 3
ENTER D:

Data Test 2

Input Result
1 (CR) W (CR) 3 (CR) ENTER A: 1
4 (CR) 5(CR) ENTER B: W

ENTER ONLY NUMERIC DATA
ENTER B: 3

ENTER C: 4

ENTER D:

The preceding example shows why it is important to clear
the buffer area during error processing. If statement 20

is changed to SETERR 490, the following occurs:

Data Test 3

Input Result
1 (CR) W (CR) 3 (CR) ENTER A: 1
4 (CR) 5 (CR) ENTER B: W
ENTER ONLY NUMERIC DATA
ENTER B:
A-7

The terminal driver supports mnemonics which protect
display fields from being overwritten. Protected fields
are written in Background Mode, and conce written and pro-—
tected, cannot be overwritten unless Protect Mode is dis-—
continued.

Protection is a two step process. First, Background
Mode must be started ('SB') prior to display of any line
or partial line to be protected. Second, Protect Mode

must be initiated('PS').

The following mnemonics are associated with Field Pro-
tection, and are fully described in Chapter 8 under
MNEMONICS:

'SB' - Start Background Mode; Start Write Protect
'SF' - Start Foreground Mode; End Write Protect
'PS' - Start Protect Mode

'PE' End Protect Mode

Default resets regarding Field Protection and use of other

mnemonics include:

1. @(X,Y) allows the cursor to overwrite a protected posi-

tion. Input or output at that point overwrites the X,Y
position, but not other positions following it. (The
cursor and data are placed in the first unprotected
display position to the right and below the
protected positions).

2. Use of any of the following mnemonics resets the VDT
from Background ('SB') to Foreground mode:

!CE! ‘CS*
lCFl lSFl
lCLl
3. Use of the following mnemonics when 'PS' (protect mode

on) is in effect is ignored by the VDT:

'"ID'!
'LI'
ICLI

4. Use of the following mnemonics resets protect mode:
ICSI
ICFI
|PE|

5. Following execution of 'PS', the cursor is at home
position (0,0).

NOTES

M6262A

NOTES

M6262A A-10

INTRODUCTION

APPENDIX B - MULTI-KEYED FILES

A Multi-Keyed file is a file of variable-length records
which keys contained within the records. While the Direct
file can only have a single key associated with each
record, and that key must be unique within the file, a
Multi-Keyed file may have a large number of keys associa-
ted with each record, and duplicate keys are allowed.

The information in this appendix is intended to be an in-
troduction to the use of Multi-Keyed files. It contains
guidelines to assist the BASIC programmer to determine
when it is appropriate to use Multi-Keyed files, examples
of useful techniques to be used when accessing Multi-Keyed
files and how to convert an existing application program
from the use of Direct and/or Sort files to the use of
Multi-Keyed files.

The term "key" is used to refer to a specific entry in a
keyed field in an individual record; a "keyset" is the
collection of keys corresponding to a single keyed field
in a file. One keyset, designated the primary keyset,
must always be defined, and is not allowed to have dupli-
cate entries. The remaining keysets may or may not allow
duplicates, depending on its definition. Keysets, except
the primary keyset, may be added or removed dynamically.

The enhancements to Business BASIC to handle Multi-Keyed
files include five new BASIC directives, one new string
function, one new I/0O clause and a new class of variables.
A discussion of these Business BASIC language enhancements
is included in this appendix. For a detailed description,
refer to the appropriate section in this manual. The new
language elements are:

Directives:
o MULTI creates a Multi-Keyed file. This statement uses
a "format string" to describe the individual fields

within Multi-Keyed file records.

o PACK puts value into a retain buffer in the same way
WRITE outputs values to a logical unit.

o UNPACK extracts values from a retain buffer in the same
way READ fetchs wvalues from a logical unit. This al-

lows the rereading and reformatting of an I/O record.

o FIELD ALIAS allows dynamic associations of BASIC'S
field variables with field names in the file.

o SET FIELD allows a user to add and drop keysets in an
existing file.

B-1 M6262A

M6262A

Functions:

o FMTINFO returns information about the fields within an
opened Multi-Keyed file.

I/0 Options:

o RETAIN within READ saves the "raw" I/0 record so that
it may be used by later UNPACKS, PACKs and WRITE
RETAINS.

Variables:

o Field variables allow efficient associations to be
created between BASIC'S regular variables and fields
within a record. These field variables may be used
within READ, EXTRACT, FIND, INPUT, WRITE, PRINT, PACK,
UNPACK and IOLIST directives.

There is only one difference between BOSS/VS and BOSS/IX
implementations of Multi-Keyed files. The BOSS/VS system
uses actual variable-length records, so that differing
amounts of disk space are used depending on the record's
size. The BOSS/IX system, on the other hand, uses physi-
cally fixed-length records which are "logically" wvariable-
length. That is, the disk space required for each record
is the same, but the record's "size" is retained with each
record.

The primary focus of the syntax changes incorporated into
BB86 is the addition of specifying the structure of
records within a data file at the time the file is creat-
ed. The method for creating the logical record structure
of the data file is to include a "Format" string in the
statement that creates the file. This Format string con-
sists of a series of field definitions. Each field
defined in the Format string corresponds to a field or
item within the data record.

Once the logical structure of records within a file has
been described to the system, the BASIC programmer can be
freed from much of the complexity of keeping track of the
physical position or structure of a field within a data
record. This freedom is often referred to as data inde-
pendence. The syntax of BB86 allows programmers to con-
centrate on the logic flow of their programs without be-
coming mired in details about exact field order or loca-
tion. 1Instead, the program simply references the name of
the appropriate field and the system performs the neces-
sary work to locate the field within the data record.
Other benefits of using BB86 syntax and Multi-Keyed files
are detailed in this appendix.

Some of the material presented here is specific to the
BOSS/VS and BOSS/IX operating systems. When this is the
case, the applicable operating system is mentioned.

APPLICATIONS Multi-Keyed files offer the capability to reference a set
FOR MULTI-KEYED of records (a file) by a number of different access paths
FILES (keysets). This capability has been possible in the past

only through the use of combinations of files. For exam-

ple, an employee data base might be implemented by storing
all of the employee data records in a Direct file with the
employee number being the key. Random access to the data
records based on other sorts (e.g., employee name or de-—
partment number) could be implemented by creating one Sort
file for each required access path. The keys for these
Sort files would contain the information needed (like em-
ployee name) as well as some unique identifier that would

allow reference to the Direct "master" file. This unique
identifier should be the key value associated with the
record.

With the use of Multi-Keyed files, it is possible to
maintain multiple access paths in a single file. Each
access path provides a means to reference the data records
both randomly and sequentially according to the order of

the alternate key values. Following are some examples of
specific cases where the use of Multi-Keyed files would be
recommended.
Existing Existing applications that use "sets" of Direct and
Applications Sort files to emulate the behavior of Multi-Keyed files
That use Sets may be modified to use the Multi-Keyed file type. The key
of Files of the Direct file becomes the primary key of the new

Multi-Keyed file. Each Sort file becomes an alternate (or
duplicate) keyset on the Multi-Keyed file. Specific in-
structions for converting programs are given below

Existing Some applications do not need an alternate access path to
Applications be maintained during normal operations, but only on spe-—
That use the cial occasions such as end-of-month processing. 1In the
Sort Utility past, this requirement might be met by using the Sort

utility to generate a new file by sorting the Direct file
on the desired field. With the advent of Multi-Keyed
files, this requirement can be satisfied by using SETFIELD

statements in the BASIC program that requires the alter-
nate access path . The SETFIELD directive can be used to
generate a new keyset (access path) on a defined field.
The same SETFIELD directive can be used to remove the
keyset when there is no further need for that access path
Note that SETFIELD locks the file during the creation of
the keyset.

B-3 M6262A

Enhancement of
Existing
Applications

Rewriting 0O1d
Or Writing New
Applications

THE BENEFITS
OF USING
MULTI-KEYED
FILES

Reduced File
Maintenance

Improved Data
Integrity

M6262A

Existing applications may be enhanced by the use of
multiple access paths available with Multi-Keyed files.
The easy-to-use nature of the Multi-Keyed syntax will make
development of these enhancements to programs much simpler
and will reduce development time.

When applications need to be rewritten for other reasons
(for example, for improved maintainability or added
functionality) or when new applications are planned, the

added functionality of Multi-Keyed files and the improved
readability of BB86 syntax should certainly be considered.

When a single Multi-Keyed file is used in place of the
techniques previously available, such as using sets of
Direct and Sort files, system administrators and operators
will be able to take advantage of several benefits. These
benefits will take the form of reduced complexity and im-
proved productivity, both in program development and in
day-to-day operations.

One of the benefits that system administrators and
operators will receive is a reduction in file maintenance
tasks. When a set of files is used, care must be taken to
save or restore the entire set when making or using backup
copies. Obviously, with a single file, there are no con-
cerns about missing part of the data base on a backup.

It is easier to maintain data integrity within the data
base by using Multi-Keyed files because file maintenance
is reduced. If an error is made saving, restoring, or
copying a set of files, the result may be a mismatched
set. Problems of this type would cause unpredictable
results that would be very difficult to diagnose.

Moreover, when a record is added to a set of files, it is
implemented as a WRITE to the Direct file and a WRITE of
the corresponding key to each of the related Sort files.
If this "logical write" operation takes place in more than
one place in the application, care must be taken to make
sure that all files are correctly updated. When opera-
tions for rewriting or deleting records are taken into ac-
count, it becomes apparent that there is significant
potential for programming errors.

Improved
Performance

Reduced
Disk Space
Requirements

Reduced
Complexity of
Applications

Furthermore, files are not 'self describing and the cor-
rect updating sequence is "hidden" in the application pro-
gram. The problem of maintaining correct record updates

is compounded when a new access path (ans Soft file) is to
be maintained. ©None of these problems exist with Multi-
Keyed files because the file system is responsible for
maintaining all keysets and all other bytes associated
with each of the fields in the file.

Another potential cause for data integrity problems is a
system failure. While each file in a set of files may be
separately recovered using the file repair utility
(depending on system type), problems may still exist if an
update operation was in progress at the time of the system
failure. For example, if a record was being rewritten, it
might require updates to several of the associated Sort
files. 1If the system failed between two of the Sort file
updates, the set of files would contain inconsistent in-—
Formation. This kind of error is undetectable by the file
repair utilities. Therefore, Multi-Keyed files eliminate
many of the typical problems associated with DIRECT and
SORT files becoming inconsistent.

There are several areas where the use of Multi-Keyed files
will provide better performance than an equivalent imple-—
mentation using a set of files. One area of particular
interest is the reading of a record based on an alternate
keyset. When accessing a set of files, this function re-
quires a READ of the appropriate Sort file, extraction of
the Direct file key from the Sort file key, then a READ of
the Direct file. The corresponding operation on a Multi-
Keyed file requires only a single READ. The READ of the
Multi-Keyed file is significantly faster than the sequence
required on a set of files.

Multi-Keyed files use disk space more efficiently than

do sets of Direct and Sort files. The actual amount of
savings depends on how many Sort files are involved and
the relative sizes of the keys vs. the data records. As
the number of Sort files that are replaced increases and
as the key size increases, the percentage of saved disk
space will increase. In addition, on BOSS/VS, some ap-
plications can make use of the variable length record fea-
ture of Multi-Keyed files for more disk space savings.

As mentioned previously, the use of Multi-Keyed files and

the new syntax available in BB86 will simplify record ac-—

cess to the user data base. This will lead to fewer pro-

gramming errors that result in inconsistencies in the user
data base. 1In addition, it may reduce program development
and maintenance time and costs.

B-5 M6262A

THE BB86
SYNTAX FOR
MULTI-KEYED
FILES

Creating a
Multi-Keyed
File

Format String

M6262A

This section introduces the BB86 syntax for operations on
Multi-Keyed files. It conveys the more important aspects
of most operations by use of examples. There are a few
more complex, less frequently used aspects which the
reader may at first skip.

Creation of Multi-Keyed files is like the creation of
other file types, except with the addition of the required
EMT= clause:

MULTI FILENAMES, NUMRECS,RECSIZE, FMT=FORMATS$, ERR=0320

RECSIZE and ERR= are optional. RECSIZE will be determined
by the variables contained in the format.

In this example, FILENAMES has been previously set to the
name of the file to be created.

NUMRECS has been previously set to the maximum number of
records to be allowed in the file. The "number of
records" has the intuitively obvious meaning: If one
writes a record which doesn't replace a record that was
there previously, this increases the number of records in

the file by one. If one writes a record which replaces a
previously—-existing record, this has no effect on the
record count. If one removes a record, this decreases the

number of records in the file by one.

If one attempts to add a record so that the number of
records exceeds NUMRECS, then an error 2 occurs.

RECSIZE (optional) has been previously set to the maximum
number of bytes allowed in each record. If this value is
omitted, BASIC will calculate the value as the smallest
number of bytes which allows all the fields in the format
string to be present. 1If a record which is to be written
to the file contains more bytes than specified by the ex-
plicit or implicit RECSIZE, error 17 will occur.

ERR= (optional) shows the number of the statement to be
executed next i1if the system is unable to create this
Multi-Keyed file. This overrides any SETERR statement
which may have been executed but does not override SETESC
if the error was caused by the <ESCAPE> being pressed.

FMT=FORMATS$ shows how each record in the file is divided

into fields, via (in this example) FORMATS. FORMATS has

been previously assigned something which we will call the
"format string".

Generally, all records in the same file will be divided
into fields in the same way; Jjust how that division is
performed as described in the format string. The format
string describeas each field in the record layout. We show
here a sample format string. For purposes of clarity we
show each field on a separate line; in practice, they're
typically all part of the same string, and are separated
from each other by one or more spaces:

EMPLNUM# = N5 PRIMARY
SOCIALSN# = N9 ALTKEY
FRSTNAME# = S16

LASTNAME# = S20

FULLNAME# = LASTNAME# + FRSTNAME# DUPKEY
DEPTNUM# N4 DUPKEY

COMMENT # S*200

The first part of each field description is a field name

ending with #, followed by =. The part of the field name
before the # is subject to the same restrictions as BASIC
numeric variable names (begins with a letter, etc .). DNote

that the # symbol is not available on all keyboards. On
those keyboards which do not have the # symbol, the sym—
bol (English pound sign) may be used instead because it
generates the same character code. Table B-1 shows the
ISO-646 standard characters which generate the necessary
character code.

Table B-1l. IS0-646 Standard Characters

Language Symbol Language Symbol
I50646-002 (U.S.) # I50646-017 (SPN.)
IS0646-021 (GER.) # IS0646-015 (ITAL.)
IS0646-060 (NOR.) # I1S0646-004 (U.K.)
IS0646-011 (SWD.) # IS0646-016 (PORT.) #
IS0646-025 (FRN.) IS0646-019 (GREEK) #
NEN-646 (DUTCH) #

After the equal sign (=) comes the field information, fol-

lowed by optional keyset information.

Multi-Keyed files, as the name implies, can have more than
one key per record. The keys are derived from the values
in the fields of each record. The above example would

have a keyset based on each of these fields: EMPLNUM#,
SOCIALSN#, FULLNAME#, and DEPTNUM#. Each record would
have a key in each of these keysets. The keys for a given
record would be equal to the value of each of these four
fields in the record.

B-7 M6262A

M6262A

The keyset information shows whether a given field is
represented by a keyset, and what kind of keyset that is.
The keyset information may be changed after the file has
been in use. The field names and field information are
not allowed to change for the life of the file; nor can
new fields be added once the file has been created.

Keyset information, if present, is either PRIMARY, ALTKEY,
DUPKEY, or NOKEY. 1If no keyset information is present,
then NOKEY is implied.

o

PRIMARY means that this field forms the primary keyset
of the file. Every Multi-Keyed file must have one and
only one PRIMARY keyset. The keyset may not be
deleted, and does not allow duplicate values. Other
special properties of the keyset are mentioned in this
document at the appropriate places.

Suppose a record is written to a Multi-Keyed file, and
the PRIMARY key for that record matches the PRIMARY key
for another record that is already in the file. That
earlier record will be automatically removed from the
file at the same time that the new record is written,
unless DOM= is specified in the WRITE statement; in
that case, the earlier record will stay, the new record
won't be written at all, and the COM branch will be
taken.

ALTKEY means that this field forms a keyset, and no two
records in the file may have the same value for this
field; this insures that all keys in the keyset are
different. The keyset may be deleted, and there may be
more than one of them, or none at all.

Suppose a record is written to a Multi-Keyed file, and
an ALTKEY-type key for that record matches the cor-
responding key for another record that is already in
the file. That earlier record will stay in the file;
an error 11 has occurred.

DUPKEY means that this field forms a keyset, and it is
permitted for several records in the file to have the
same value for this field; this implies that several
keys in the keyset may have the same value also . The
keyset may be deleted, and there may be more than one
of them , or none at all.

Suppose a record is written to a Multi-Keyed file, and
a DUPKEY-type key for that record matches the cor-
responding key for another record that is already in
the file. That earlier record will stay in the file,
and the new record will also get written; the records
will coexist with duplicate keys in the same keyset.

o NOKEY means that this field is not represented by a
keyset at all. If this field is either fixed-length or
composite, a keyset (either ALTKEY or DUPKEY) may be
added for this field at a later time. Even if it is
not represented by a keyset, it may be part of a com-
posite field which is represented by a keyset. 1In the
above example, LASTNAME is not presented by a keyset,
but FULLNAME is, and LASTNAME is part of FULLNAME.

A PRIMARY, ALTKEY, or DUPKEY field may not be longer
than 80 bytes. This limit does not apply to a NOKEY
field.

A total of 40 keysets are allowed in a Multi-Keyed file
not including NOKEY.

Field Field information in a format string shows (or implies)
Information where the field starts, how large the field is, and what
kind of information is in the field.

Where the field starts in the record usually follows the
simple rule: "Each field begins just after the end of the
field defined just before it in the format string." Excep-
tions to this rule are discussed later.

When choosing how large the field is, and what kind of in-
Formation is in the field, one can choose from five gener-
al categories:

fixed-length string field;
variable-length string field;
fixed-length numeric field;
variable-length numeric field; or
composite field.

O O O O O
QoYY Y

The following examples illustrate most of the variations
available.

N5 a numeric field with an implied "00000"
mask

UNSIGNED N5 the same

N5.2 a numeric field with an implied "00000.00
mask

+N5.2 a numeric field with an implied "+00000.00
mask

-N5.2 the same

SIGNED N5.2 the same

B-9 M6262A

Variable-length
Fields

M6262A

N*10 a variable-length numeric field taking an
average of 10 bytes, with no implied mask;
a terminating character (a line feed) will
be added when the field is written and
removed when the field is read back in

S10 a 10-byte string, padded with trailing null
bytes which will be removed when the field
is read back in

LEFT S10 same

RIGHT S10 a 10-byte string, padded with leading null
bytes which will be removed when the field
is read back in

RIGHT X10 the same, except that the null bytes will
be retained when the field is read back in

RIGHT C20 a 20-byte string, padded with leading
spaces which will be removed when the
field is read back in

S*20 a variable-length string, with no padding;
a terminating line feed will be added when
the field is written and removed when the
field is read back in

LAST#+FIRST# a composite field composed of two other
fields. This does not carve out a new
area in the record, but simply gives a new
"unifying" name to two other fields which
have already been carved out. These two
fields need not be adjacent to each other.
This is an exception to the "each field
follows the previous one" rule.

Note that the specification for S, X, and C type fields
may all start with the LEFT or RIGHT modifier, and that
LEFT is implied if neither appears.

The length specified for a variable-length field is not
enforced when writing that field; but it is used for cal-
culating the maximum record length when creating a file.
This means that if the format string describes each record
as containig two variable-length fields, and one of

the variable-length fields in a particular record is
longer than specified in the format string, then the other
variable-length field must be shorter, so that the overall
record length does not exceed the maximum specified for
the file.

B-10

In general, variable-length fields must follow all fixed-
length fields in the record; in other words, all fields
which follow a variable-length field must be variable-
length fields as well. Exceptions are described later.

Variable-length fields may not be keysets; that is, they
may not be declared to be PRIMARY, ALTKEY, or DUPKEY. The
alert reader, however, may think there is a loophole, that
it is possible for the first variable-length field to con-
tribute to a composite field. That will not work; the
system checks for, and prevents, this situation. 1Indeed,
if any field overlaps a variable-length field, even by one
byte, then that field may not be PRIMARY, ALTKEY, or DUP-
KEY either.

A variable-length field may only make up part of a com-
posite field under the following conditions:

o only a specified number of bytes in the variable-length
field is used, thus forcing the number of bytes in this
component of the composite field to be fixed also.

o it is the first variable-length field in the record,
thus forcing the position within the record as a whole
to be fixed.

There are also restrictions on the use of a variable-
length field within that strange animal known as a
"starting-position clause", described below

Composite One might assume that a composite field simply consists of
Fields two or more other fields. This assumption is logical, but
not quite complete. A composite field may consist also
of parts of other fields, or one part of one field. A
maximum of eight subfields are allowed in one composite
field.

A composite field may not be used to place data into a
record (via, for example, WRITE, PRINT, or PACK); it is
primarily intended for getting data from a record (via,
for example, READ, INPUT, or UNPACK), and can be used as a
key.

A composite field is specified by specifying one or more
components separated by "+". Suppose a format string
specifies a fixed-length field called FIXEDFLDt. Suppose
also that the first variable-—-length field in the format
string is called FIRSTVAR#. In that situation, here are
examples of variations allowed in a component of a com-
posite field. The first variant is usually used only to
combine two or more fields into one. Variants 2, 3, and 4
are normally used to specify part of a field, although it
is permissible to "spill over" into the next field.

B-11 M6262A

M6262A

Variant 5 (not highly recommended) is used to specify part
of a record without referring to a particular field at
all. There are other variants allowed by the general
syntax, but they do not offer any functionality beyond
what is provided by these five. We'll discuss each of
these five variants in more detail later.

1) FIXEDFLD#

2) FIXEDFID# (7)

3) FIXEDFLD# (7) : 5
4) FIRSTVAR# (3) : 5
5)

39 : 6
It is best to view these variants not as complete specifi-
cations of composite fields, but as specifications of com-

ponents of composite fields. To illustrate

0030 LET FORMATS="FIELD1l# ? N5 PRIMARY"

0030: +" FIELD2# = S15"

0030: +" FIELD3# = S10"

0030: +" FIELD4# = FIELD1# + FIELD2# (7)"
0030: +" + FIEID3# (2) : 5"
0030: +" FIELDS# = S12"

In this example, FIELDS5# will physically follow FIELD3# in
each record. FIELD4# does not define a new area in the
record; being a composite field, it "comprises" its data
from other fields or from unnamed regions of the record.

Note that in a composite field declaration, a component
may not name any variable-length field after the first
one. It's easy for the system to compute where the first
variable-length field begins, and that location is the
same for every record in the file. For other variable-
length fields, the location is dependent on the lengths of
previous variable-length fields, and so can vary from
record to record.

Note that there is no indication in these specifications
whether the component of the composite field is of type
"N", "S", "X", or "C"; all that appears after the colon or
the conma is an integer. 1In practice, all components of a
composite field are of type "LEFT S".

Using composite fields as components of other composite
fields is not permitted.

How is an excessively long component (one that overflows
into the next field) handled? 1In most of these examples,
there is no verification that the component actually fits
in the named field, or even that it fits in the whole

record . If the component spills over into the next field,
then it is useful to keep in mind how the component will
be built. To do so, remember that:

B-12

o if the component spills over the end of a fixed-length
field, the next byte in the component will normally be
the first byte of the next field;

o if the component spills over the end of a variable-
length field, the next byte in the component will
normally be a line feed, which will be followed by the
first byte of the next field;

o if the component spills over the end of the record
(which will end with a line feed if the last field was
variable-length), then the remaining bytes of the com-
ponent will be null (all bits off).

Keeping those things in mind, here's a discussion of the
above examples:

1) FIXEDFLD#

In this example, the component is simply some other
field. This is the usual way to combine two fields as
the components for a composite field.

2) FIXEDFLD# (7)

In this example the component doesn't consist of all of
FIXEDFLD#, but only of that part of it which starts at
byte 7. This is similar to the BASIC substring nota-
tion in which one can refer to all the bytes after byte
6 of a string by saying STRINGS (7). An error occurs
in this example if FIXEDFLD# is less than 7 bytes long.

3) FIXEDFLDt (7) : 5

In this example the component doesn't consist of all of
FIXEDFLD#, but only of the five bytes beginning at byte
7. There is no requirement that FIXEDFLD# be 11 bytes
long, or even 7 bytes long. If it isn't 11 bytes long,
then this subfield will extend beyond the end of
FIXEDFLD#; if it isn't even 7 bytes long, then this

subfield will actually begin beyond FIXEDFLD#.

4) FIRSTVAR# (3) : 5
This example works the same way as FIXEDFLD# (7) : 5.
There is no requirement that FIRSTVAR# be 7 bytes long,
or even 3 bytes long.
Each component of a composite field must be of fixed
length; therefore, FIRSTVAR# (3) won't work, because
the length depends on how long FIRSTVAR# itself is.

5) 39 : 6

B-13 M6262A

Fields That
Don't Follow
Each Other

M6262A

Suppose the whole record as it is stored on disk were
accessible as a BASIC variable called RECORDS. Then
this example would define the corrponent as RECORDS$
(39,6). There is no requirement that the record be 45
bytes long, or even 39 bytes long.

There are two situations in which the actual order of
fields in the data record is different from the order in
which the fields were specified in the format string. The
first situation is the use of a composite field. If a
Format string contains (perhaps among other items) the
following adjacent items:

o a non-composite field
o a composite field
o a non-composite field

Then the second non-composite field shown above will
normally follow the first non-composite field.

The second situation is a sort of "multiple viewpoint" of
the record. 1In some contexts it is referred to as
"multiple logical record types", and it works as follows:
Suppose sometimes the record could be divided into certain
fields, but in other situations it would be more ap-
propriate to divide it into different fields, with dif-
ferent names and at different locations in the record. Or
suppose that part of the record should always have the
same layout but the rest of the record could have one of
several layouts depending on what's found in the first
part of the record. We might have a record, for example,
that looks like this:

o Fo———— Fotmm +
! account # lexpire!?! feedback +
o fo— e +
A
| | |
| +———+—————— +
| A A
I |
[premium

| number of copies
individual or institution?

In this partial example of a record layout for a file of
subscribers to a magazine, there is a field which identi-
fies whether the subscriber is an individual or an in-
stitution. Based on that field, either the next field
shows details of whether the individual subscriber has
sent letters to the editor of the magazine, or the next
two fields show how many copies are to be delivered to the
institution and what premium to the normal subscription
price must be paid by that institution.

B-14

There is a way to use the format string to specify this

sharing of space in the record. One does this by using

an explicit "starting position" on one of the fields, in
this case OOPIES#. The above (simplified) example might
be expressed as follows:

0100 FORMATS = "ACCOUNT# = N8 PRIMARY"
0100: +" EXPIRE# = N6 DUPKEY"
0100: +" ACCTTYPE# = Cl DUPKEY"
0100: +" FEEDBACK# = S8"

0100: +" COPIES# = FEEDBACK# : N3"

0100: +" PREMIUM# = +N1.2"

What happens in the above format string is that COPIES¥*
does not come after FEEDBACK# in the normal manner; ra-
ther, it starts where FEEDBACK* starts. PREMIUM* con-—
tinues right after COPIES*, following the normal each-
field-follows-the-previous-one rule.

There are two variations on the previous example:
1. COPIES# = FEEDBACK# (3) : N3

This makes the first byte of COPIES# coincide with
the third byte of FEEDBACK#.

2. COPIES# = 17 : N3

This makes the first byte of COPIES* coincide with the
17th byte of the whole record. This sort of dead reck-
oning without using field names is harder to do cor-
rectly, and is not recommended

Actually, it is recommended that the practice of overlay-
ing field definitions (as shown in this appendix) be
avoided entirely for two reasons. The first is that

files organized this way could be difficult incorporate
into a database management system which may be implemented
in the future. The second is that it is easier to

reorganize a file to change (typically lengthen) fields
which have not been overlaid than it is to change fields
which share space with other fields.

For applications where starting positions are needed,
though, there are three additional points to keep in mind.

The first point is a minor restriction. TIf two fields are
defined to occupy exactly the same space in each record
(whether they are composite or not), one or the other may
be a keyed field (PRIMARY, ALTKEY, or DUPKEY) but not
both. This restriction encourages organization of the
file so that writes occur faster, because there are fewer
keysets.

B-15 M6262A

M6262A

The second point is to differentiate between two kinds of
field specification. Suppose we have the above example of
a format string, but with one minor change:

0100 FORMATS = "ACCOUNT# N8 PRIMARY"
0100: +" EXPIRE# N6 DUPKEY"
0100: +" ACCTITYPE# CI DUPKEY"
0100: +" FEEDBACK# s8"

0100: +" COPIES# FEEDBACK# : 3"
0100: +" PREMIUM# +N1.2"

The difference is that COPIES# is now defined as FEEDBACK#
3, not FEEDBACK# : N3. TIf the part of the specification
after the ":" is an integer, as it is here, then the ":" is
N-, S-, X-, or C-type specification, then the field is not
a composite field. 1In the above example, since COPIES* is

a composite field, PREMIUM* is located immediately after
FEEDBACK*, and would not be a correct implementation of
the diagrammed record layout; but if COPIES* is not a com-—
posite field, as in the previous example, then PREMIUM* is
located immediately after COPIES*.

The third point to keep in mind when using starting posi-
tions is the effect that this has on rules concerning
variable-length fields. When using a starting position,
one usually starts at a fixed point in the record, by
using either an integer, a fixed field, or the first
variable-length field; if this is so, then even if prior
fields in the format string are variable-length, one may
now revert to using fixed fields again. When the starting
position is fixed like this, then the first variable-
length field declared at or after the starting position
has a fixed beginning point within the record; so this
variable-length field enjoys the same distinctions ac-—
corded to the "first variable-length field" as described
elsewhere in this document.

Suppose, on the other hand, that the starting position is
not at a fixed point in the record; that is, it is de-
scribed in terms of a "non-first" wvariable-length record.
In that case, fields declared at or after the starting
position must be variable-length fields, and none of them
qualifies as the "first variable-length field". This
restriction applies only until a subsequent starting posi-
tion is specified which refers to a fixed point in the
record.

an

Gaps In
The Record

READING RECORDS
FROM A MULTI-
KEYED FILE

Examples

It is possible to describe areas of the record which are
to contain no information whatsoever. It is difficult to
describe a situation in which one might want to do such a
thing, but for completeness we offer the following summary
of the syntax of such an unused field:

FILLER = 39 : 6
FILLER = FIXEDFLD# 5
FILLER = FIRSTVAR# : 5
FILLER = FIXEDFLD# (7) : 5
FILLER = FIRSTVAR# (3) : 5

Note that "FILLER" is not followed by #. Also note the
similarity between these examples and some of the examples
above.

First we give a few simple examples. Then we go into
significant new capabilities such as expanded KEY=, FIELD
ALIAS, RETAIN, and UNPACK.

Suppose a file has the following format string:

F1#=S10 PRIMARY
F2#=S5

F3#=S8

F4#=515
F5#=+N5.2
Fo#=S3

F74#=S3

F8#=N3

F9#=53

and suppose that the following READ operation is performed
on the file:

READ (5) AS, BS, F4#=CS$, D, ES, #F8, QS$, #=F3S

Then the following variables receive values from the cor-
responding fields in the record:

AS gets its value from Fl#
BS gets its value from F2#
C$ gets its value from F4#
D gets its value from F5#
E$ gets its value from Fo6#
F8 gets its value from F8#
Q$ gets its value from F9#
F3$ gets its value from F3#

B-17 M6262A

Note that the fields do not need to be read in the order
in which they appear in the record; indeed, not all of the
fields need be read. If the 10 list contains a variable
but does not associate a field name with that variable,
this implies that the field to be used is the one that
follows (in the format string) the field used for the pre-
vious variable in the I/0 list. If a field name is ex-
plicitly shown in an item in the I/O list, it causes a new
"current field" to be defined, and may alter the field-to-
variable correspondences of later items that may be in the
long form (e.g., F4#=C$) or in the short form (e.g., #F8).
In the example above, variable D gets its value from field
F5# because the previous item in the I/0O list explicitly
named field F4#. Similarly, Q$ gets its value from F9#
because the previous item referenced field F8#.

Also note that numeric variables must correspond to N-type
fields, and string wvariables must correspond to S-, C-,
and X-type fields; an error 17 will result if this cor-
respondence is not maintained.

Three equivalent forms of the above READ statement are:

READ (5)F1#=AS,F2#=BS,F4#=CS$,F5#=D,F6S$=ES, F8#=F8, FO#=0S$, F3#=F3$

READ (5)

READ (5)

Expanded KEY=
Capabilities

M6262A

AS, BS,F4#=CS$S, D, ES, #=F8, QS, #=F3$
AS, BS,F4#=CS, D, ES, #F8, Qs, #EF3S

One may place everything after the "READ (5)" in the above
READ statement into an IOLIST statement, and instead say:

READ (5) IOL=1230

When reading using the KEY= clause, one may specify the
searching of any field which is either PRIMARY, ALTKEY, or
DUPKEY (that is, anything but NOKEY). For example, one
may say "read the record whose key in keyset F1l# is
'Jones'" by using clause:

KEY=F1l#="Jones"

Of course, it is also permissible to have the key value
in a string variable and use this clause:

KEY=F1#=STRINGS

If the variable name matches the field name (except for
the # at the end of the field name), certain shortcuts
may be taken. The following examples are equivalent:

KEY=F14#=F1$
KEY=#=F1$
KEY=#F1$

These five examples will only work if field Fl# is of type
S, C, or X, but not N (numeric). If the field is of type
N, then the following examples will work, with the last
three being identical in effect:

KEY=F1#=-987.33
KEY=F1#=PAYMENT
KEY=F1#=F1
KEY=#=F1
KEY=#F1

It is also acceptable not to specify the keyset, in which
case the PRIMARY keyset is used. Here are two examples:
KEY="Jones"

KEY=-987.33

If one does not use the KEY= clause, then the "next"
record is read. Since different keysets place different
ordering on the records, the keyset which is used to find
the "next" record is the last keyset which was previously
used in a KEY= clause, whether that previous KEY= clause
was in a REMOVE statement or in a READ statement (or
variant such as EXTRACT or READ RECORD) . If no KEY=
clause has been used for this logical unit since it was
opened, then the PRIMARY keyset is used for ordering pur-
poses on sequential reads.

Reading Using Note that field names are hard coded into a BASIC program;

FIELD ALIAS that is, there is no way (without using an EXECUTE
statement) to input from the user (or compute from
scratch) a field name, place it into a string variable,
and use that string variable in place of the usual field
name, There is, however, a way around this: the FIELD
ALTIAS statement:

0530 FIELD ALIAS (1,ERR=650) X#=F$, Y#=G$, Z#=HS

B-19 M6262A

M6262A

If this statement is in the program, one can then have
READ statements containing field names X#, Y#, Z#, etc
The actual fields read from the record, however, are not
X#, Y#, and Z#; the actual fields have the names which
were in F$, G$, and HS$S at the time statement 530 was ex-—
ecuted. Assuming that the contents of F$, G$, and HS
have not changed since the execution of the FIELD ALIAS

statement, the following two statements perform the same
action:
8720 READ (1,KEY=X#=A$) Y#=BS, Z#=CS

8720 EXECUTE "READ (1,KEY="+FS$+"=AS$) "
8720: +GSH"=BS, "
8720: +H$+"=C$"

Note that this example only specifies aliases for unit 1;
a READ statement for unit 2 can also refer to field X#,
but this will actually pull field X# from the record
that's read from unit 2 (if there is such a field), unless
a FIELD ALIAS statement naming #X has also been executed
for unit 2.

A statement such as statement 0530 above can be executed
more than once; each time there can be different wvalues in
F$, G$, and HS, and each time a subsequent read referring
to fields X#, G#, and H# will actually read different
fields.

An error 17 occurs if any of the following happens:

o reading a numeric field into a string

o reading a field string into a numeric

o performing a FIELD ALIAS where the field name specified
in the string doesn't exist in the file to which the
specified unit number is open

o performing a FIELD ALIAS where the field name specified
in the string isn't even a valid field name (including
the "#")

For every logical unit which is open to a Multi-Keyed file
there is a RETAIN buffer. When reading data from fields
into BASIC variables, it is possible at the same time
(i.e., in the same READ statement) to copy the whole rec-—
ord from which those fields come into the RETAIN buffer.

Suppose one reads
then reads one or
specifying RETAIN
this is done, the

a record into the RETAIN buffer, and
more records from the same unit without
for these later read operations. If
RETAIN buffer will continue to hold the

data from the prior read which specifies RETAIN; the later

reads don't change the buffer at all.

B-20

The RETAIN option is used like this:
READ (1,KEY=NEWKEYS$,RETAIN) F1#=AS$,F2#=X

It isn't necessary to use the KEY= clause just because one
wants to use the RETAIN clause; they are independent fea-
tures. Just use each one when it's helpful.

After placing the data into the RETAIN buffer, one can
pull additional data out of it with the UNPACK statement,
which works just like READ except that it pulls the data

out of the RETAIN buffer, not out of the file. (Since the
system already knows which record is desired, the KEY=
clause is not used here.) For example:

UNPACK (1,ERR=0970) F3#=BS,F4#=Y

Other READ RECORD works as READ does, except that no fields are

Variations specified (except optionally in the KEY= clause), and that

On the READ the destination is simply a string variable. This reads

Statement the record as it is stored on disk, and is of limited use-
fulness.

EXTRACT works just like READ, with two differences: (a)
The record will be locked until the next operation on the
same logical unit, (b) If the next operation on the same
logical unit is a REMOVE, no key is required.

If a DOM= clause is in a READ or READ RECORD statement, it
works the same as for DIRECT files; if the specified key
is not found, the error branch is taken. If there is no
DOM= clause, then an error 11 is generated

INPUT and INPUT RECORD work exactly the same as READ and
READ RECORD do, respectively.

WRITING RECORDS Most of the discussion here is about differences
TO A MULTI- (syntactically and otherwise) between reading and writing.
KEYED FILE

In general, the syntax for a WRITE statement is the same
as that for a READ. One difference is the same for Multi-
Keyed files as it is for other file types: one may write
string expressions and numeric expressions, but one may
not read into them. The first two items after the ")" in
the following example may appear in a READ statement, but
not the last four; but all six may appear in a WRITE
statement:

WRITE (5) F1l#=AS$,F2#=A,F3#=BS+"123",F4#=3*X,F5#="Now"
,F6#=98.6

B-21 M6262A

M6262A

(In this example, the odd-named fields are of type S, C,
or X; the even-named fields are of type N.)

An IOL= clause, with a corresponding IOLIST statement, may
be used here, just as with the READ statement.

Do not use a KEY= clause in a WRITE statement to a Multi-
keyed file; the key(s) is (are) generated directly from
the record, according to the format string for the file.

If a DOM= clause appears in the WRITE statement, then that
branch is taken if either the PRIMARY key for the new
record matches an already existing PRIMARY key, or an
ALTKEY-type key for the new record matches an already ex-
isting key in the corresponding keyset. Note that this
prevents a record from overwriting a previously existing
one with the same PRIMARY key; without the DOM= statement,
the overwriting would take place.

In order to rewrite a record, it is necessary to execute
a WRITE statement without the DOM= clause. The PRIMARY
key value of the record being written must match the PRI-
MARY key value of the record in the file which is to be

overwritten. It is not necessary to execute an EXTRACT
statement (on the record which is to be overwritten) prior
to the WRITE, but the EXTRACT ... WRITE sequence is highly

recommended in any case where the file is shared.

If, during an EXTRACT ... WRITE sequence, the PRIMARY key
value changes before the WRITE, then effectively a brand
new record is being written, and the ordinary rules for
writing a brand new record will apply. Note that in this
situation the record lock will be removed from the old
record when the WRITE takes place.

When a record is written or rewritten, it may cause dupli-
cate key values to be created in those fields which are
defined to be DUPKEY. These duplicate key values are
stored in the corrosponding keyset along with the other
keys with identical values. Further, all of these key
entries with the same value ate stored chronologically,
based on the order of which the KEY was added to the file.
For example, if a record is rewritten so that a field
defined to be DUPKEY is changed, the old key value of that
field will be removed from the corresponding keyset and
the new value will be inserted at the end of all other
keys with that same value. Thereafter, when reading se-
quentially through that keyset, within a given set of
duplicate key values, records will be returned in the
order in which the keys were added to the keyset.

Note that certain operations do not preserve the chrono-
logical ordering of duplicate key wvalues. These opera-
tions would include file utilities that alter the number
of records in the file (UPDATE on BOSS/VS and fchange on
BOSS/IX), reconstruction utilities (DISKANALYZER or
RECONSTRUCT on BOSS/VS and frepair on BOSS/IX), and utili-
ties that copy files one record at a time.

If the chronological ordering of duplicate key values is
to be preserved despite the use of the above-mentioned
utilities, or if other orderings are preferred, it is
necessary to append a sequencing field to the end of the
main field being defined. When this is done, the field
need not be defined DUPKEY and should properly be defined
ALTKEY, because the addition of the sequencing field will
cause all key values of the composite to be unique.

A FIELD ALIAS statement works for subsequent WRITE state-
ments, Jjust as it does for READ statements.

PACK may be used to modify the RETAIN buffer for a logical
unit, Jjust as UNPACK may be used to copy fields in the
retain buffer into variables. BEWARE, though: a PACK
without the RETAIN clause will reinitialize the RETAIN
buffer. The following erroneous example will leave just
E$ in the buffer:

0530 PACK (1) Fl#=AS

0540 PACK (1) F2#=B$; REM WRONG!
0550 PACK (1) F3#=C$; REM WRONG!
0560 PACK (1) F4#=D$; REM WRONG!
0570 PACK (1) F5#=ES$; REM WRONG!

Each of the following examples will place all five values
into the RETAIN buffer. The one on the left will leave
ONLY those values in the buffer; the one on the right will
also leave untouched any other fields in the buffer which
had values before this example ran:

0530 PACK(1)F1#=AS$ 0530 PACK(1l,RETAIN)F1#=AS$
0540 PACK(1l,RETAIN)F2#=B$ 0540 PACK(1l,RETAIN)F2#=B$
0550 PACK(1l,RETAIN)F3#=C$ 0550 PACK(1l,RETAIN)F3#=C$
0560 PACK (1l,RETAIN)F4#=D$ 0560 PACK (1l,RETAIN)F4#=D$
0570 PACK(1l,RETAIN)F5#=E$ 0570 PACK(1l,RETAIN)F5#=E$

The example on the left above may be replaced by the first
of these two statements, and the example on the right
above may be replaced by the second:

0530 PACK (1) F1l#=AS,F2#=BS,F3#=CS$,F4#=DS$,F5#=ES
0530 PACK (1,RETAIN) F1l#=AS,F2#=BS,F3#=CS$,F4#=DS,F5#=ES$

B-23 M6262A

REMOVING
RECORDS FROM
A MULTI-KEYED
FILE

NEW LANGUAGE
FEATURES

M6262A

When the retain buffer contains the record just the way
one wants it, one may WRITE using the RETAIN clause:

WRITE (1,RETAIN)

If the retain buffer contains the record almost the way
one wants it, one may modify any desired fields to produce
the desired record at the same time one writes the record:

WRITE (1,RETAIN) F7#=98.6, #F8$

WRITE RECORD works as WRITE does, except that no fields
are specified, and that the source data is simply a string
variable. The contents of the string variable are used as
the exact contents of the record; the string is considered
to be divided into fields as specified in the format
string. This feature is of limited usefulness.

The RETAIN clause is not allowed on WRITE RECORD.

PRINT and PRINT RECORD work exactly the same as WRITE
and WRITE RECORD do, respectively.

One can remove the record which has a given PRIMARY key
like this:

REMOVE (1,KEY=AS$)

Since one cannot remove a record by knowing just the value
of a non-PRIMARY key for the record, one should not
specify a field name in the REMOVE statement:

REMOVE (1,KEY=F1#=AS$); REM WRONG!

One can remove a record which has been EXTRACT 'ed without
specifying the key at all:

REMOVE (1)

If the previous operation to this logical unit was not EX-
TRACT, an error will result and no record will be removed
from the file.

The following paragraphs address the new elements included
in BB86 for Multi-Keyed files. Refer to the appropriate
sections of the main text of this manual for the general
syntax.

The KEY The KEY function returns the next key in the current

Function keyset (that is, the keyset which was last specified in a
KEY= clause for this logical unit). The field will be
treated as type "S", with trailing nulls removed. This

means, for example, that if the current keyset is of type
N5.2, and the next value in that keyset is 3.5, then KEY
(that unit) is "00003.5".

The FMTINFO Suppose a BASIC program is to function as a sort of util-

Function ity to work with files whose format string is unknown. It
uses the FMTTINFO function to become acquainted with such a
Format string. The FMTINFO function takes 1, 2, or 3 par-
ameters. The first parameter is the number of the logical
unit which has been opened to the Multi-Keyed file; this
parameter is required. The second parameter is optional
and is used to specify individual fields, or that informa-
tion for all fields is desired. The third parameter, also
optional, shows the form in which the program wants the
information returned.

Suppose we have a file whose format string was originally
formed as follows. (Normally it would not be split into
many lines like this, but this arrangement makes it easier
to read each field definition.)

0530 FORMATS "F1#=S5 PRIMARY "

0530: + "F2#=N5 ALTKEY "
0530: + "F3#=X5 DUPKEY "
0530: + "F4#=C5 NOKEY "
0530: + "F5#=S5 "

0530: + "GS5#=F1#+F2# "
0530: + "Fo#=N*10 "
0530: + "FT7#=S*20"

Suppose further that this file is open on unit 7 and we
perform one of the following operations (they're all
equivalent) :

AS = FMTINFO (7)

A$ = FMTINFO (7,0)
AS ? FMTINFO (7,0,0)

B-25 M6262A

M6262A

Then A$ will contain the format string in much the same
Format as it was originally defined (and as it may have
been altered by the SETFIELD)operation). AS$ is a single
string, but for ease of reading we break it up into
several pieces, as follows:

"F1#=S5 PRIMARY "
"F2#=N5 ALTKEY "
"F3#=X5 DUPKEY "
"F4#=C5 "

"F5#=S5 n
"GS#=F1#+F2# "
"F6#=N*10 "
"ET#=5*20"

Note that two spaces separate each adjacent field descrip-
tion, and that there are no other occurrences of two ad-
jacent spaces in the format string. Also note that the

specification of "NOKEY" for F4# has disappeared; the
meaning, however, is the same.

Suppose that we change the call to FMTINFO as follows:
AS$ = FMTINFO (7,0,1)

Then AS will contain the format string in a form which is
much easier for a BASIC program to read. In hex, the con-
tents of A$ are as follows:

2010 1020 2230 2100 2000 FOOO 5000 6000

Each field is described by two bytes. In the following
discussion of the contents of these two bytes, "x" means
four bits which may contain anything, and are not
guaranteed to contain zero.

The first byte shows what the field type is. The allow-
able values are:

$1x$ "N" (fixed length)
$20% "S" (fixed length)
$21s "C" (fixed length)
(
(

$228 " fixed length)
$5x8 "N*" (variable length)
$6x$ "S*" (variable length)
SFx$ a composite field

The second byte shows what the key type is. The allowable
values are:

S0x$ NOKEY (not a key)
$1x$ PRIMARY
$2x$ ALTKEY
$3x$ DUPKEY
B-26

The reader is encouraged to verify that the hex string as
shown above in A$ corresponds to the format string
originally used to create the file. The most convenient
formula for the number of fields defined in the file is
the following:

3280 A$ = EMTINFO (7, 0, 1)
3290 NUMFLDS = LEN (AS) /2

The remaining variations simply allow one to access indi-
vidual field definitions. The following code:

5500 FOR I = 3 TO 4
5510 AS$ = FMTINFO (7, I, 0)
5520 B$ = FMTINFO (7, I, 1)
5530 PRINT ,"'",AS, ", "'

5540 PRINT HTA (BS)

5550 NEXT I

will produce the following output (keeping in mind that in
each case the last four bits of BS$ are not guaranteed):
'"F3#=X5 DUPKEY'
2230
'"F44#=C5"
2100

If the third argument to EM TINPO is 0, it may be omitted.
The following variations are identical:

AS EMTINPO (7, 3, 0)
A$ = FMTINFO (7, 3)

The following forms are also allowed, and identical:

AS
A$ = FMTINFO (

FMTINFO (7, SOCIALSN#, 0)
7, SOCIALSN#)

If a BASIC program is reading field names from a terminal,
EMTINPO can be used in combination with FIELD ALIAS to
obtain information (for example, is this field numeric?
does it have a keyset?) about the field whose name has
just been typed:

0040 INPUT "Enter the field name: ", F$

0050 IF F$ = "" GOTO 40 ELSE IF FS$S(LEN(FS)) <> "#"
0050: THEN FS=FS+"#"

0060 FIELD ALIAS (5,ERR=80) X#=F$

0070 GOTO 100

0080 PRINT "No such field"

0090 GOTO 40

0100 INFO$ = EMTINPO (5,X#,1);

(now look at INFO$ for the information)

B-27 M6262A

INITFILE

SETFIELD

FIELD ALIAS

M6262A

The INITFILE directive, when used on a Multi-Keyed file,
removes all the records from the file, but keeps the
Format string unchanged; even though SETFIELD operations
may have been performed on the file since it was first
created, these operations are not undone by the INITFILE
statement.

0730 INITFILE "FILE",ERR=0900

The ERR= clause is optional.

It is possible to change a fixed-length or composite field
from one to another of these key types: NOKEY, ALTKEY,
DUPKEY. The statement looks like this:

SETFIELD "FILE",FMT="FIELD3#=DUPKEY",MSG="Progress: "
,ERR=1230

The MSG= and ERR= clauses are optional.
The file must not currently be open by anyone.

The PRIMARY field may not be changed to any other keyset
type; no other field may be declared as PRIMARY.

An error will occur if changing a field from NOKEY or DUP-
KEY to ALTKEY if two or more records have the same data in
the specified field; this would generate duplicate keys.

The MSG= clause, if present, specifies that a message

should be displayed on the terminal, followed by a running
percentage-complete tally. At the end of the operation,
this tally will show 100%. If the clause is omitted,

the percentage-complete tally will not show.

The message will be displayed at the screen's current
cursor position, unless a new one is specified as in this
example:

MSG=@ (65,20) +"Progress: "

It is permissible, but not very useful, to change a field
from ALTKEY to ALTKEY, from DUPKEY to DUPKEY, and from
NOKEY to NOKEY.

Suppose that a BASIC programmer is working with a multi-
keyed file and doesn't want to hard code the field names
into his program. This might happen if the end user of
the program will be typing field names at the terminal, or
if the program computes the field names (F001#, FO002#,
etc.) .

Miscellany

The ingenious programmer can find a way to achieve this
effect, but the result is generally inefficient. The
FIELD ALIAS directive 1is provided to do this efficiently:

0210 FIELD ALIAS (1) X#=FS$

0550 READ (1, KEY=X#=G$) AS, BS$, CS$

Statement 210 says the following:

From this point on, whenever performing operations on unit

1, which is opened to a Multi-

specified, the field actually
as of the time this statement
This is to be effective until
on the same unit number (1 in

Keyed file, if field X# is
desired is the field in F$
(statement 210) is executed.
(a) some other FIELD ALIAS
this case) and the same

alias name (X# in this example, not the contents of F$) is
performed, or (b) the unit (unit 1 in this example) is

CLOSE'd.

It is important to remember that the FIELD ALIAS is per-

formed on whatever expression

is on the right-hand side of

the equals sign as of the time of execution of the FIELD

ALIAS statement. For example:

7700 AS = "BROWN#"
7710 FIELD ALIAS (1) J#
7720 AS = "GREEN#"

7730 READ (1, KEY=J#=BS)

will read using field BROWN#,

AS
X$, YS$, Z%

not field GREEN#.

FIELD ALIAS can be used for more than READ statements; in
fact, it can be used effectively in any statement contain-
ing a field name, except (of course) another FIELD ALIAS

statement.

Modifications to the syntax of Business BASIC elements are

described in the main text of
following.

this manual, but we note the

The syntax for the OPEN and CLOSE statements is the same
for Multi-Keyed files as it is for other file types.

Neither the IND function nor the IND= clause is allowed
in operations on Multi-Keyed files.

M6262A

FILE CREATION

Examples

M6262A

a Multi-Keyed file.

Sample Creation #1:

This example creates a fairly simple file,
has five fields, two of which are keys.

The following paragraphs give some examples of creating

DEPTFILE, that
An actual depart-

ment file would have many more fields than this, but this
illustrates basic file creation.
DEPTFILE's Record:
| DEPTNAME# | DEPTNUM* | DRCTRNUM# | BUDGET# | EXPENSE#
| (S12) | (N5) | (N6) | (N8.4) | (N8.4)
| (ALTKEY) | (PRIMARY) | | |
0110 DEPTFMTS =
0110 "DEPTNAME# = S12 ALTKEY
0110 DEPTNUM# = N5 PRIMARY
0110 DRCTRNUM# = Nb6
0110 BUDGET# = N8.4
0110 EXPENSE* = N8.4"

0120 MULTI "DEPTFILE", 100, FMT = DEPTFMTS$

DEPTFMTS$ = is the beginning of a normal BASIC string as-

signment. The string on the right-hand side specifies all
of the field names and field attributes that will be found

in a file which we'll soon create.

DEPTNAME# is the name of a field whose attributes appear
after the equals sign.

S12 indicates a string field that's 12 bytes long.

ALTKEY shows that this field is an alternate keyset which
doesn't allow duplicate keys.

N5 is a 5 byte numeric field.

PRIMARY specifies the field that's the primary key (this

is required).

N8.4 is a 13-byte numeric field of the form

"00000000.0000".

MULTI creates a Multi-Keyed file named "DEPTFILE" using
the format string found in DEPTFMT$ and allocates 100
The record size is implied by the
Format string (49 bytes per record in this example).

records in that file.

B-30

Sample Creation #2

This next example creates a more complex record. This
record has two fields, EMPNAME# and OMSKEY#, that are com-
posites of other fields, and two overlaid fields, SALARY*
and HRRATE# (this is really two separate record types that
reside in the same file... a record type for hourly em-
ployees if STATUS#="H", and another type for salaried em-
ployees if STATUS#="S").

EMPFILE's Record:

EMPNAME#				SALARY#
(X20)				(N5.2)
(ALTKEY)				
	EMPNUM#	DEPTNUM#	STATUS#	

| | (N6) | <N5) | (SI) |

LASTNAME#	FRSTNAME#	MI#	(PRIMARY)	(DUPKEY)		HRRATE#
(s10)	(S9)	(si)				(N3.4)

OMSKEY# is an S6 field that is composed of the first 5
bytes of LASTNAME# and the first byte of FRSTNAME#.

0100 EMPFMTS$ = "LASTNAME# = S10

0100 FRSTNAME # S9

0100 MI# ST

0100 EMPNUM# N6 PRIMARY

0100 DEPTNUM# N5 DUPKEY

0100 STATUS# ST

0100 SALARY# N5.2

0100 EMPNAME # LASTNAME# + FRSTNAME# + MI# DUPKEY
0100 HRRATE# SALARY#: N3.4

0100 OMSKEY# LASTNAME# (1,5) + FRSTNAME# (1,1)
0100 DUPKEY"

0110 MULTI "EMPFILE", 5000, FMT=EMPFMTS$

DUPKEY specifies an alternate keyset which allows dupli-
cates.

EMPNAME# is a "composite" field which is made up of three
subfields, LASTNAME#, FRSTNAME# and MI#. Note that com-—
posite fields may be read or used as a keyset (as EMPNAME#
is), but that they may never be written.

SALARY# specifies that the field being defined, HRRATE#,
is to begin at the same byte that the SALARY# field
started at. This, in essence, specifies two alternate
record types... one which uses the field SALARY# and the
second which uses the field HRRATE#.

B-31 M6262A

SAMPLE
PROGRAMS

M6262A

OMSKEY# is a composite field that is made up of parts of
two other fields: Dbytes 2 for 5 of LASTNAME# and byte 1
for 1 of FRSTNAME# (the (1,5) acts just like the substring
specifier of a regular string variable). This field is
used as a key (a DUPKEY to be precise) and, like all com-—
posite fields, is a "read-only" field which may not be
written. Note that it would have been nice, but not prac-
tical, to have specified here that both OMSKEY# and
EMPNAME# were ALTKEYs rather than DUPKEYs.

The following programs illustrate the sort of use to which
Multi-Keyed files can be put. The examples use a fair
number of the facilities, and give a good flavor for the
flexibility of Multi-Keyed files. The first two programs
use the files just created above.

Program 1: This example references the two previously
created files. First, two new records will be added to
"DEPTFILE". Finally, a record is read from "EMPFILE", the
amount of pay calculated, and the result totaled in the
appropriate "DEPTFILE" record.

1030 OPEN (2) "DEPTFILE"

1500 WRITE (2) DEPTNAME# "LANGUAGES", DEPTNUM# 1099
1510 WRITE (2) DEPTNAME# "LARGE SYSTEMS SW", DEPTNUM#
1510:1092

2020 OPEN INPUT (1) "EMPFILE"

2030 READ (1,KEY=EMPNUM# 12345, RETAIN) STATUS# SS$S,

2030: # DEPTNUM
2040 IF S$="S" THEN UNPACK (1) SALARY# S ; PAY=S

2040: ELSE UNPACK (1) HRRATE# P ; PAY= R *
2040 :HOURS

2050 EXTRACT (2, KEY= #DEPTNUM, RETAIN) #BUDGET,
2050 : #EXPENSE

2060 EXPENSE = EXPENSE + PAY

2070 WRITE (2, RETAIN) # EXPENSE

2080 IF EXPENSE > BUDGET THEN PRINT "Department",
2080:DEPTNUM, " blew its budget

OPEN... notice that there's nothing special about OPENing
a Multi-Keyed file.

WRITE... again notice nothing special.
DEPTNAME# "LANGUAGES" specifies that the field DEPTNAME#
is to be given the value "LANGUAGES". Since this is an

S12 field, there will be 3 null bytes tacked onto the end
Of "LANGUAGES".

B-32

M6262A

DEPTNUM# 1099 puts the value 1099 into the field DEPTNUM#.
This is an N6 field so "001099" is actually stuck into the
record. Note that the other three fields that weren't
specified will be initialized to nulls and the DEPTNUM#
and DEPTNAME# fields will be automatically used as keys...
a KEY= clause is not allowed on a WRITE since the keys are
already part of the data.

KEY=EMPTNUM# 12345 specifies that the READ is to use the
EMPNUM# keyset (which was defined as a PRIMARY in the
Format... although other keysets defined with ALTKEY or
DUPKEY may also be used in this manner) and that the
EMPNUM# value is to be 12345 (actually "012345" since this
is an N6 type field). Subsequent READs advance through
the EMPNUM# keyset until the next KEY= clause is given.

RETAIN causes the read operation to save the "raw" I/0
record for later use by UNPACK, PACK RETAIN and WRITE
RETAIN statements. Note that each logical unit can have
its own "retain" buffer.

STATUS# S$ sets S$ to the contents of the STATUS# field.
It would have been an error if 'STATUS# "abc"' had been
used here instead, since STATUS#'s value can't very well
be read into "abc".

DEPTINUM is exactly equivalent to saying DEPTNUM#
DEPTNUM. This takes the value of the DEPTNUM# field and
puts it into the program's numeric variable, DEPTNUM.

Note that DEPTNUM and DEPTNUM# are two distinct variables
in much the same way that A, AS$, A(10) and A# are all dis-—
tinct.

Once S$ has been examined to see if it's "H" or "S", then
we'll know whether to use UNPACK to get SALARY# or
HRRATE#. UNPACK can be thought of as a kind of reread op-
eration which allows different record types to be handled
properly. Note that the proper I/0 buffer is available.

EXTRACT works with Multi-Keyed files. Its RETAIN
specifies a different retain buffer than what's being used
by "EMPFILE" I/O. DEPTFILE's retain buffer will be used
later on a WRITE.

KEY=#DEPTNUM is equivalent to KEY=DEPTNUM# DEPTNUM. Since
DEPTNUM# is also the PRIMARY keyset, it is also permis-
sible to use KEY=DEPTNUM.

WRITE with RETAIN allows the user to update only one field
and retain the values of all others. This is similar to a
rewrite, but only implies that values are to be retained,
not that the same record is going to be updated

Program 2: This example is almost identical to the pre-
vious one, but introduces the FIELD ALIAS and IOLIST
directives.

1010 OPEN INPUT (1) "EMPFILE"

1020 FIELD ALIAS (1) DEPTNO# = "DEPTNUM#", EMPNO# =
1020:"EMPNUMt"

1030 OPEN (2) "DEPTFILE"

1040 FIELD ALIAS (2) DEPTNOt = "DEPTNUM#"

1500 WRITE (2) DEPTNAMEt "LANGUAGES", DEPTNOt 1099
1510 WRITE (2) DEPTNAMEt "LARGE SYSTEMS SW", DEPTNO#
1510:1092

2000 IOLIST EMPNAMEt ENAMES, #DEPTNO

2030 READ (1,KEY=EMPNO# 12345, RETAIN) STATUS# S#,
2030:I0L=2000

2040 IF S$="E" THEN UNPACK (1) SALARY# S ; PAY=S
2040: ELSE UNPACK (1) HRRATEt R ; PAY= R *
2040 :HOURS

2050 EXTRACT (2,KFY=#DEPTNO, RETAIN) #BUDGET , #EXPENSE
2060 EXPENSE = EXPENSE + PAY

2070 WRITE (2, RETAIN) #EXPENSE

2080 IF EXPENSE > BUDGET THEN PRINT "Department",
2080:EDEPT, "blew its budget!"

FIELD ALIAS (1) sets up future references of the field-
variable DEPTNO# to actually use the field DEPTNUM# and
EMPNO# to actually use EMPNUM#. Note that this alias only
applies to logical unit 1's field-variables DEPTNO# and
EMPNO#... not to other field-variables of the same name on
other logical units. For more information, refer to the
topic "FIELD ALIAS" in this appendix.

FIELD ALIAS (2) specifies that DEPTNOt, on logical unit 2
only, actually be DEPTNUM# within the format string.

IOLIST has been extended to allow fields to be associated
with BASIC expressions. The IOL=2000 clause then becomes
a short-hand way of saying "EMPNAME# ENAMES$, DEPTNO#
DEPTNO". Since this is almost a textual type of substitu-
tion, an IOLIST may be used by any file and on any logical
unit (unlike FIELD ALIAS).

M6262A B-34

The remaining programs all work with the same file. The
record layout is as follows:

e to—— - Fom Fom +-———+
n5 | N9 | 516 | 520 | nd |
e Fo—— o o +————+
| | | | |
| ! first name last name
| social security number department number

employee number

full name (last name first)

Within each box in this diagram, "N" means "numeric",
"S" means "string", and the number shows how many bytes
are reserved for the field.

The layout of the record is described by the format
string shown in this statement:

0030 LET FORMATS$="EMPLNUM# = n5 PRIMARY"

0030 +" SOCIALSN# = N9 ALTKEY"

0030 FRSTNAME# = S16"

0030 LASTNAME# = S20"

0030 FULLNAME# = LASTNAME#+FRSTNAME# DUPKEY"
0030 DEPTNUM# = N4 DUPKEY"

EMPLNUM# is the employee number. It is a numeric field,
and has been designated the PRIMARY key because the em-
ployee number is the principal means of identifying each
record in the file (that is, identifying each employee in
the company). When a record is deleted, for example, it
is the employee number which will be used to identify the

record not the social security number or the last name of
the employee. Note thet the PRIMARY keyset of a file may
never have duplicate values; in this case, no two employ-—
ees will have the same employee number.

SOCIALSNt is the social security number. It is a numeric
field, and has been declared to be ALTKEY; a keyset will
be maintained using this field, so that employee records
may be accessed directly by social security number.
Should the need arise, the keyset may also be used to
print the records so that the social security numbers are
in order. Since this field is ALTKEY, not DUPKEY, dupli-
cate values are not allowed in this field; no two employ-
ees are allowed to have the same social security number.

B-35 M6262A

Printing a
Multi-Keyed
File

M6262A

FRSTNAME# is the employee's first name. It is a

string (non-numeric) field. It has not been declared to
be PRIMARY, ALTKEY, or DUPKEY; therefore this field is of
type NOKEY, and as it exists can never be used to access
records directly by employee's first name ("give me Fred's
record") or list the records in order of first name.

LASTNAME# 1s the employee's last name; like FRSTNAME#, it
is a string field, and is of type NOKEY.

FULLNAME# i1s a combination of FRSTNAME# and LASTNAME#, and
is therefore called a "composite" field. It has been
declared to be DUPKEY; a keyset will be maintained using
this field, so that employee records may be accessed
directly using first and last name. ("Get me the records
for all Fred Smiths in this company.") Should the need

arise, the keyset may also be used to print the records in
alphabetical order, last name first. "Last name first"
means that Fred Smith comes after Jim Jones, but if the
record is printed as it appears in the file, the first
name will appear before the last name on the listing.
Since this field is DUPKEY, not ALTKEY, duplicate wvalues
are allowed in this field; there may be two Fred Smiths
working for the company.

DEPTNUM# is the number of the department to which the em-
ployee belongs. It is a numeric field, and has been
declared to be DUPKEY; a keyset will be maintained using
this field, so that employee records may be accessed
directly using the department number. ("Get me the
records for all employees in department 1099.") Should
the need arise, the keyset may also be used to print the
records of all employees, ordered by department number.
This field is DUPKEY, not ALTKEY; otherwise, it would not
be possible to have any department contain more than one
employee, which causes more than one record to contain the
same department number.

The three programs which follow are designed more for easy
reading than for user friendliness. The first one prints
a report showing all the records in the file, ordering
them by any field, even if that field is currently
declared NOKEY. The second one allows a user to update
records which are already in the file. The third one
shows how to create the file in the first place, convert-
ing from a DIRECT or SERIAL file.

This program lists the whole file, in order by any field
in the file. 1If there is no keyset for the field yet, it
produces one, lists the file, and then deletes the keyset.
(Note that in real life no new keyset could be added if
anyone had the file open.)

Lines 0120, 0130, 0140, 0170, and 0180 show how FMTINFO
can be used to find out information about an otherwise un-—

familiar

0010
0020
0030
0040
0040
0050

0050:

0060
0070
0080
0090
0100

0100:

0110
0120
0130
0140
0150
0160
0170
0180
0190
0195
0200

0200:

0205
0210
0220

0220:

0230
0240

0240:

0250
0260
0270

0270:

0280
0290
0300
0310
0320
0325
0330
0340

0340:
0340:
0340:
0340:

0350

field.

REM "PRINT THE FILE IN A SPECIFIED ORDER"
BEGIN
OPEN (1) "EMPLOYEES"

INPUT "On which field should we sort the file? ",

:FS

IF F$S = "" GOTO 40 ELSE IF FS(LEN(FS)) <> "#"
THEN FS=FS+"4#"

FIELD ALIAS (1,ERR=80) X#=F$

GOTO 100

PRINT "No such field"

GOTO 40

REM "Position at the beginning of

the requested keyset"”
REM "First we must ask: is there a keyset already?
INFO$ = FMTINFO (1,X#,1)
FLDINFO = INT(ASC(INFOS(1,1))/16)
KEYINFO = INT(ASC(INFOS$(2,1))/16)
IF KEYINFO <> 0 GOTO 270
FLDNAMES = FMTINFO (1,X#,0)
FLDNAMES = FLDNAMES (1,POS ("#"=FLDNAMES))
CLOSE (1)
SETERR 220
PRINT "Please wait for keyset generation.",
SETFIELD "EMPLOYEES", FMT=FLDNAME$+"=DUPKEY", MSG=
n n
PRINT 'LF', 'Generation complete."
GOTO 240
PRINT 'LF', 'Couldn't create a keyset for this
field"
SETERR 0; GOTO 30; REM "We must reopen the file"
SETERR 0; REM "We didn't catch an error from line
0190 onward."
OPEN (1) "EMPLOYEES";
FIELD ALIAS (1,ERR=80) X#=F$
REM "This field has a keyset; is this field
numeric or string?"
IF FLDINFO <> 1 GOTO 320
REM "Position at beginning of numeric keyset"
EXTRACT (1,KEY=X#=0)
GOTO 330
REM "Position at beginning of string keyset"
EXTRACT <1,KEY=X#="")
OPEN (2)"p*"
PRINT (2)"EMPLNUM#",
(11),"SOCIALSN#",
(21), "FRSTNAME#",
(41), "LASTNAME#",
(62), "DEPTNUM#"
PRINT (2)""

B-37 M6262A

Updating a
Multi-Keyed
File

M6262A

0360

0360:

0370

0370:
0370:
0370:
0370:

0380
0390
0400
0410

0410:

0420

READ (1,END=390) #EMPLNUM, #SOCIALSN, #FRSTNAMES,
#LASTNAMES, #DEPTNUM

PRINT (2) EMPLNUM:"00000",
(11), SOCIALSN:"000OO0OOOOO"™,
(21), ERSTNAMES,

(41), LASTNAMES,
(62), DEPTNUM:"0000"

GOTO 360

CLOSE (1)

CLOSE (2)

IF KEYINFO = 0 THEN SETFIELD "EMPLOYEES",
FMT=FLDNAMES+"=NOKEY"

END

This program updates a Multi-Keyed file, field by field.
As with the other sample programs, most of the human
engineering aspects have been grossly neglected, so that
the essentials of handling Multi-Keyed files could be seen

as plainly as possible.

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0105

0105:

0110
0120

0120:

0125

0125:

0130
0140
0150
0160
0170
0180
0190
0200
0210
0220

0220:

0230
0240

0240:

0250
0260

REM "UPDATE A SINGLE FIELD"

BEGIN

OPEN (1) "EMPLOYEES"

INPUT "Employee number: ",EMPLOYEE

IF EMPLOYEE = 0 THEN END

EXTRACT (1,KEY=EMPLOYEE, RETAIN,DQM=80)

GOTO 100

PRINT "No such employee number"

GOTO 40

INPUT "Field name: ", FLDNAMES

REM "<return> means no more field changes;

rewrite record"

IF FLDNAMES$="" THEN WRITE (1,RETAIN); GOTO 40
IF FLDNAMES (LEN (FLDNAMES)) <>"#" THEN

FLDNAME S=FLDNAMES+"#"

IF FLDNAMES = "EMPLNUM#" THEN

PRINT "Can't change employee number"; GOTO 100
FIELD ALIAS (1,ERR=150) X#=FLDNAMES

GOTO 170
PRINT "No such field"

GOTO 40

INFOS$S=FMTINFO (1, X#, 1)
FLDINFO = INT (ASC(INFOS$(1,1))/16)

IF FLDINFO = 1 GOTO 270
UNPACK (1) X#=VALUES; REM "from the RETAIN buffer"
PRINT "Current value: ", VALUES

IF FLDINFO = 15 GOTO 100;

REM "Can't rewrite composite fields"

INPUT "New value: ", VALUES

IF VALUES="" GOTO 100;

REM "Doesn't want to change the field"
PACK (1,RETAIN) X#=VALUES
GOTO 100

Loading Data
into a Multi-
Keyed File

CONVERTING
EXISTING
APPLICATIONS

Select an
Appropriate
Program

0270 REM "Numeric value"
0280 UNPACK (1) X#=VALUE; REM "from the RETAIN buffer"

0290 PRINT "Current value : ", STR (VALUE)
0300 INPUT "New value: ", VALUES
0310 IF VALUES="" GOTO 100;

0310: REM "Doesn't want to change the field"
0320 PACK (1,RETAIN) X#=NUM(VALUES,ERR=340)
0330 GOTO 100

0340 PRINT "Invalid numeric wvalue"

0350 GOTO 290

This program is fairly straightforward; it initializes the
file and does a record-by-record transfer into it.

0010 REM "CONVERT TO MULTIKEYED FILE"

0020 BEGIN

0030 LET FORMATS$="EMPLNUM# = N5 PRIMARY"

0030: +" SOCIALSN# = N9 ALTKEY"

0030: +" FRSTNAME# = S16"

0030: +" LASTNAME# = S20"

0030: +" FULLNAME# = LASTNAME#+FRSTNAME# DUPKEY"
0030: +" DEPTNUMt = N4 DUPKEY"

0040 MULTI "EMPLOYEES",200,FMT=FORMATS
0050 OPEN (1) "OLDDATA"
0060 OPEN (2)"EMPLOYEES"

0070 READ (1,END=0100) EMPLNUM, SOCIALSN, FRSTNAMES,
0070: LASTNAMES, DEPTNUM

0080 WRITE (2) #EMPLNUM , #SOCIALSN, #FRSTNAMES,

0080: #LASTNAMES, $DEPTNUM

0090 GOTO 70

0100 CLOSE (1)

0110 CLOSE (2)

0120 END

The following points should be considered when planning a
conversion of an existing application program from using
Direct and Sort files to the use of Multi-Keyed files.

Some applications will benefit greatly from conversion to
Multi-Keyed file use. The most obvious candidates are
those that currently emulate Multi-Keyed file function-
ality. These are discussed under the topic "APPLICATIONS
FOR MULTI-KEYED FILES" in this appendix.

B-39 M6262A

Conversion
Approaches

Selection of
Keysets

M6262A

When considering the modification of an existing applica-
tion program to the use of Multi-Keyed files, the first
decision that must be made is how much modification will
be required. For some programs, a straightforward sub-
stitution approach may be taken. For others, modification
may be impractical and redesigning and rewriting the ap-
plication or portions of it may be required . To make this
determination, the application programmer would have to
analyze the complexity of the existing application and the
difficulty in isolating the references to the individual
files that make up the user data base.

Another decision that must be made is how to distribute
the development costs. Rewriting an application
represents the largest investment in development costs

but could result in lower maintenence costs. Another ap-
proach would be to locate and replace all references to
the main Direct file and its associated Sort files with
references to the new Multi-Keyed file. This would re-
quire less initial investment, but could be slightly more
difficult to maintain than a rewritten version. A variant
of this approach would be to replace the Direct file with
an equivalent one-keyset Multi-Keyed file, and to replace
Sort files with additional keysets on the Multi-Keyed file
as time permits. This approach would have the lowest ini-
tial cost, distributing the conversion effort over a
longer period, but might also present more maintenance
difficulties.

When designing the characteristics of a Multi-Keyed

file, one of the most important decisions to be made is
the selection of which fields will become keysets. A good
starting point is to define the primary key of a Multi-
Keyed file to be the same field as was used to reference
the Direct file and define alternate keysets (either ALT-
KEY or DUPKEY) for each of the Sort files. During the
conversion design process, it may be determined that there
are other fields that should also be keyed to allow access
to the data in ways that were not possible before. At the
same time, it must be remembered that each keyset that is
maintained as a permanent part of the file will increase
the overhead required for modifications to the file.
Therefore, a subset of the keysets defined as useful may
be designated as temporary keysets that will be added to
the file only when necessary.

Selecting Not all fields which would be useful to have as keysets

NOKEY Fields should be made into "permanent" keysets. If a field is
used as a means of locating records very infrequently, it
is usually inappropriate to include it as one of the
standard keysets. For example, suppose a monthly report
is required that selects records from an Employee file
based on a field (EXEMPT#) which indicates whether or not
the employee is salaried. If the EXEMPT# field were
keyed, then it could be used to facilitate the selection
of records. However, the fact that the report is required
only monthly, presuming the field is not used as a key
for other purposes, would argue against defining this
field as a keyed field for the entire month

Finding Records Several options are available for handling cases where an

By NOKEY Fields access path is required on a field, but only infrequently.
The easiest solution is to make the field into a keyed
field when necessary with the use of the SETFIELD direc-
tive. Once the field is a keyed field, it may be used
normally to select records. Sometimes, however, it is im-
practical to perform the SETFIELD operation because that
operation requires that the file be used at the time.
In this case, it may be necessary to process all of the
records in the file, selecting only those records that
satisfy the selection criteria. If the output is to be in
order by a non-keyed field, an intermediate file should be
created with all of the selected records and then that
file, on BOSS/VS, could be sorted using the Sort utility.

On BOSS/VS, the Sort utility could be used to sort the
entire Multi-Keyed file on the contents of a non-keyed
field. This technique would be appropriate if the charac-
ter positions being sorted on had not been defined as a
field within the Multi-Keyed file format. The Sort utili-
ty has the same restriction as the SETFIELD operation, in
that the file must not be used by others at the time of

the sort.
Suggestions A few techniques are useful during the conversion process.
for Conversion These are outlined in the following paragraphs.
Data Lavout A pictorial representation of the fields within the.
Diagrams data record will facilitate the design of the data records
within a Multi-Keyed file. It is useful to have a picture
of the layout of the data records within the Direct file
as well as the layout of the new record(s). This is espe-

cially helpful if the record design contains more than one
logical record (record type).

B-41 M6262A

Field Separator

Characters

Subfields

M6262A

It is important to define as fields any combination of
character positions that might at some point be used as a
keyset. Fields that are not initially defined to be keyed
may be converted into keyed fields (either ALTKEY or
DUPKEY) by using the SETFIELD directive. However, new
fields may not be added to a format once the file has been
created, making it important to anticipate future needs.
When planning the field layout for the Multi-Keyed file,
the field for the primary key must be defined. This is
important because the field may not have been part of the
data record of the Direct file. Similarly, Sort file key
values may not have been part of the Direct data record,
but must be included in the Multi-Keyed file key.

Having a pictorial representation will make it easier to
deal with some of the special considerations described
below.

It is important to remember the field separator
characters. These will be present between fields of the
Direct file record. Because the logical structure of the
records within a Multi-Keyed file is described in the
Format string, field separator characters are not required
for fixed-length fields and are not included in the physi-
cal data records. 1In order to eliminate field separator
characters when converting a Direct file to a Multi-Keyed
file, a BASIC program should be written that READs records
from the Direct file, using the standard IOLIST; and
WRITES each record to the Multi-Keyed file, also using an
IOLIST. An example of such a program is given above. The
IOLIST used for output might be slightly different from
the IOLIST used for input (see the next section for one
example). The field separator characters in the input
data record will be used to assign data to BASIC vari-
ables, but will not be included in the output data record.

Subfields, for the purpose of this discussion, are se-
quences of characters that are defined as substrings of
other fields. For example, if field 'PHONUM ' (phone
number) is a 1l0-character string, it might consist of two
subfields: PHONUM (1,3) (area code) and PHONUM (4,7)
(local number). In order to use the subfields, the
characters must be extracted by substring reference from
the larger field. Subfields are allowed on either Direct
or Multi-Keyed files. If subfields are present in the
Direct file and they are to be eliminated in the Multi-
Keyed file (so that each subfield becomes a field that
can be referenced explicitly without a substring reference
to another field), there are two possible approaches.

The first (and preferred) solution is to READ the input
record into an IOLIST which specifies a variable for the
larger field; then extract the subfields into other
variables; finally to WRITE the subfield variables to the
Multi-Keyed file as part of the IOLIST. To clarify this
using the example above, first READ the record specifying
a variable, PHONUMS to hold the entire 10-digit number.
Then separate the parts into individual variables. Final-
ly, write the record to the Multi-Keyed file specifying
both AREAS$ and PHONES in the IOLIST:

READ (1) A, B, PHONUMS,

AREAS = PHONUMS (1,3)

PHONES = PHONUMS (4,7)

WRITE (2) A, B, AREAS, PHONES,

The second approach would be to define a new field in the
Multi-Keyed file format string which overlaid all of the

subfields (which had been described as separate fields in
the new record). For example:

MKFORMS =
AREA# = S3
PHONE# = S7
PHONUM# = AREA#: S10"

Here, the field PHONUM# overlays the previous two fields.
To convert a record using this technique, the data would
be READ the same way as in the first approach, but the
subfields would not be extracted. 1Instead, the larger
field would be written to the Multi-Keyed file specifying
the redefined field name:

READ (1) A, B, PHONUMS,

WRITE (2) A, B, PHONUM#=PHONUMS,

After writing the record this way, the parts of the phone
number may be referenced by name (AREA# and PHONE#) or the
while field may be referenced my the name of the redifined
filed (PHONUM#). The abiity to dreference a combination

of fields by a single name can be desirable, but the addi-
tion of overlaid fields implies a more complicated record
structure than really exists. Note that the use of a com-
posite field instead of an overlay field wouldnot work
because of the restriction that composite fields may not
be included in the IOLIST for a WRITE. The use of overlay
fields is not recommended.

B-43 M6262A

The WriteThru
File Attribute
on BOSS/VS

Definition of

Keysets for
Conversion

RECOVERY OF
MULTI-KEYED
FILES ON
BOSS/VS

Concurrency and
Integrity

M6262A

To speed up the conversion of a Direct file into a Multi-
Keyed file, it is important to set the WriteThru attribute
for the Multi-Keyed file to False. This will have no ef-
fect if the system-wide WriteThru parameter is set to
True, so it may be necessary to change the system-wide
parameter also. Once the conversion is complete, the
WriteThru attribute on the Multi-Keyed file should be
reset to True to improve recoverability of the file when
it is in use.

Another technique for speeding up the conversion of a
Direct file is to set up the format string for the Multi-
Keyed file to define all of the fields but only one keyset
(the primary keyset is required). This will accelerate
the WRITES to the new file. After all records have been
converted (written to the new file) the other keysets
should be added using the SETFIELD directive. This opera-
tion uses a more efficient technique to build the other
keyset structures.

This section deals with issues that arise when a system
failure causes a Multi-Keyed file to "lack integrity".
Because the internal structure of Multi-Keyed files are
more complicated than those of other file types, some of
the integrity characteristics and recovery techniques
are different and require special attention.

In handling the critical resources of file operations,
there is a tradeoff between concurrency (the ability to
have multiple users access a resource simultaneously) and
integrity. As concurrency is increased, "throughput" and
general system performance are improved. At the same time
there is an increase in the likelihood that, at any in-
stant in time, the file is in an inconsistent state. This
is especially true of Multi-Keyed files. When several
users of a file are allowed to simultaneously modify the
file (assuming they are operating on different records),
their modifications to file structures will overlap. Each
file contains an indicator, called the lack-of-integrity
indicator, which represents the current state of the in-
tegrity of the file. When modifications to a Multi-Keyed
file cause the file to be temporarily in an internally in-
consistent state, the lack-of-integrity indicator is set
to True. This indicator is used to prevent access to a
file if a system failure or system load occurs while a
file is in this state. Files in this state must be
reconstructed before they can be accessed. Because of the
interrelated nature of Multi-Keyed file structures, Multi-

B-44

Keyed files will have the lack-of-integrity indicator set
to True a greater percentage of the time than is true for
Direct files. Therefore, they will require reconstruction
following a system failure a much greater percentage of
the time than is true for Direct files.

The lack-of-integrity indicator for Multi-Keyed files

is unaffected by whether or not WriteThru is enabled for
the file. As mentioned previously, it is recommended that
WriteThru be enabled for Multi-Keyed files to maximize the
amount of data that will be recovered, but this will not
reduce the need for reconstruction.

Tools Available After a system crash or other problem that leads to a re-
loading of the system, the system administrator is con-—
cerned with providing access to the system data base as
quickly as possible, while guaranteeing the integrity of
that data base. The sequence of steps covered in the fol-
lowing section describes the quickest way to reestablish
the integrity of the user data base. The major steps in-
volve repairing or reconstructing files. There are two
tools available to reconstruct files: Diskanalyzer and the
Reconstruct utility (not to be confused with the
Validation/Restruction option within Diskanalyzer). Both
will reconstruct a keyed file that lacks integrity, but
they each use different techniques and have different
limitations and applications. Specifically, the
Reconstruct utility operates much more quickly than does
Diskanalyzer, but its limitations are that it may require
more disk space than Diskanalyzer and it may not be able
to recover all files that Diskanalyzer can recover.

File Recovery The recommended sequence of operations for recovery of
Sequence user files is:
1. On the system load immediately following a system fail-

ure, the system operator should select type 2 load.
This provides a single-user environment in which to
verify and correct certain problems. The Diskanalyzer
option 5, "DISK SPACE USAGE", should then be selected
and run on each family to verify that the system files
are intact. If this operation reports any errors, the
user must immediately take steps to correct the errors.
The Diskanalyzer functional specification describes
these steps, but to summarize the important points:

a) Reconstruct the Directory of the family(ies) that

received errors using the Diskanalyzer option
"Reconstruct Directory File" (option 10).

B-45 M6262A

M6262A

b) Reconstruct the available space file for each mem-
ber of the family(ies) affected using the option
"Reconstruct Available Space Files" (option 9).

c) Select and run option 5 again to verify that the
problems detected have been corrected.

Run Diskanalyzer option 1, "Find All Files That Lack
Integrity". The list of files that this option gener-
ates will be used in subsequent steps. This procedure
can be run while still under type 2 load.

At this point it will be necessary to reload the system
under type 1 load in order to use the Reconstruct util-
ity. If normal access to filrd must be avoided because
there are files that lack integrity, steps must be
taken to inform or prevent users from restarting their
work. With the new 8.6 release, this can be ac-—
complished with the job manager GROUP enable initial
command. Suggestions on how to control access to the
system through the startup procedures are contained in
the System Startup Overview document.

Run the Reconstruct utility to reconstruct all
keyed files that lack integrity - using the output of
step 2 to select the files.

Use the Diskanalyzer Validate/Reconstruct option to
reconstruct those files which either are not keyed
files (e.g., Serial or Indexed files) or are damaged in
such a way that the Reconstruct utility fails to
recover them.

Finally, if after steps 1 through 5 have been performed
and there are problems with starting up the application
that seem bo be attributable to file corruption prob-
lems, the customer may be advised to take other, more
time-consuming steps such as running the Diskanalyzer
option "Validate All Files", validation of specific
files or, depending on the circumstances, restoration
of files from the most current backup.

When recovery of all files is complete, including any
renaming that must be done following the use of the
Diskanalyzer reconstruction option, access to the
system by others can be allowed. If access to the
system was prevented by not enabling the terminal
groups (using the Job Manager) it can be restored by
enabling them at this time.

As can be seen from the sequence above, the reconstruction
of a Multi-Keyed file using the Diskanalyzer option is

not recommended until after the Reconstruction utility has
been tried and has failed. The validation of all files or
the validation of a specific file is recommended only in
the unusual circumstance that the other recovery mechan-
isms fail.

RECOVERING This section describes the mechanism for analysis and re-
MULTI-KEYED construction of Multi-Keyed files under the BOSS/IX oper-—
FIILS ON ating system. The utility that performs this function is
BOSS/IX the File Analysis and Repair Utility (frepair). The
EREPAIR utility can be used to determine if there is any
corruption in a given file. If the file is corrupted the

utility may also be used to repair the file. The goal of
the repair is to retrieve as much data as possible from
the corrupted file and to copy this data into a new file.
The new file has the same name as the original file and

replaces the original file. The operation of this utility
requires that the file system is in good working order.

No attempt is made within FREPAIR to detect or repair
problems in the file system. Detection and repair of file
system problems is done automatically at system load time.
If a file system problem is detected or suspected after
system load, the FSCHK command may be performed to verify
the integrity and to repair the file system if necessary.

Template File The File Analysis and Repair Utility requires certain in-
Formation about the damaged file, such as file size, data
record size, key descriptors and format string in order to
create a new file with the same attributes as the file
being repaired. This information is normally found in the
file descriptor for the damaged file. (Note: For
simplicity, the term file descriptor also refers to the
file definition information which is stored in the associ-
ated "index" file. the "index" does not appear in
the directory.) However, sometimes the file descriptor
itself has been damaged. 1In this case, the vital informa-
tion is conveyed to the utility in the form of a template
file which must have the same characteristics as the
damaged file, but does not need to contain the same data
The most convenient way to generate the template file is
to restore a recent backup copy of the damaged file.

Disk Space Repairing a file requires disk space at least equal to the

Requirements size of the file being repaired. Repairing a Multi-Keyed
file could require twice the disk space of the file being
repaired if it is necessary to use a separate template
file for the file attributes.

B-47 M6262A

User Interface All user input to the utility is completed before the
analysis or analysis and repair operations begin. To
repair a Multi-Keyed file, the user is prompted to enter a
template file name. The default tei rplate file name is the
name of the file being repaired, but when the file des-
criptor of the file being repaired is damaged, the user
should specify a separate template file, which can be the
name of a backup copy of the damaged file. Normally, the
default file name should be used. However, if this
results in errors which are related to the file descrip-
tor, a copy of the damaged file should be used as a

template. The types of errors which would regquire a sepa-

rate template file include:

1. The file cannot be opened and locked

2. The record size is out of range (1 < Record size <
32756)

3. The key descriptor contains values that are out of
range

4. Invalid information in the Format string.

If the user specifies a template file which was created
with different attributes than the file being repaired
(such as with different keys, or data record lengths or
different format string, etc .), or if corruption in the
file descriptor area of the template file cannot be
detected, the repaired file will be built on the basis of
a false description of the file. This will result in the
repaired version of the file being corrupted itself.

The analysis option will only analyze the given file(s)

and send the report to the specified output device. The
analysis and repair option will first analyze the file and
then try to repair the file. The report for both the
analysis and repair will be sent to the specified output
device. If an error occurs, a message describing the na-
ture of the error will be displayed on the screen.

Single User When repairing a file, it is highly recommended that the

Mode operation be performed in single user mode. This will
prevent the possibility of a bad block being reallocated
(to some other file for another user) by the file system
during a repair. Bad blocks found during a repair opera-
tion will be added to the bad blocks list when the repair
is complete.

Operating in single user mode should also eliminate the

possibility of running out of memory for temporary working
space during the operation.

M6262A B-48

REPAIRING A The objective of repairing a file is to recover as much of

MULTI-KEYED the data in the file as possible, and to allow the user to

FILE access the file without getting any errors. There is a
possibility of data loss, so the user should attempt to
back up the file first.

If the user selects the repair mode, the file will be
repaired even if it is not corrupted.

When a Multi-Keyed file is being repaired, the utility
first performs an analysis of the file structure. The
first step of the analysis is to read the entire file one
block at a time to detect any bad blocks. Any bad blocks
encountered are reported to the user and the block number
is saved so that the block can be added to the bad blocks
list at the end of the repair. Following the block read
validation, the file is checked for errors such as dis-
crepancies in the B-Trees that implement the wvarious
keysets, or errors in reading each data record.

Following the analysis phase, the data is extracted from
the file and a new file is created with the records read.
To do this, the damaged file is read again, one record at
a time. Contained within each data record are the keys
associated with that record, which will be used to build
the keysets within the new file. This process continues
until all records from the damaged file have been proc-
essed. When the repair is complete, the corrupted file
will be deleted. All bad blocks discovered earlier will
be added to the bad blocks list.

Following the completion of the repair operation, the
newly repaired file may be referenced under its previous
name. The only data loss which might occur would be the
result of the inability to read certain data records out
of the corrupted file.

B-49 M6262A

M6262A

NOTES

APPENDIX C - VARIABLE TABLES FOR BOSS/IX

There are eight variable tables used in the BOSS/IX imple-
mentation of Business BASIC. The following description of
the tables is intended to help in the use of the CPL and
LST functions.

The tables must start on an even boundary, so if the hash
field ends on an odd boundary, a l-byte hold exists be-
tween the end of the hash field and the first variable
table. Each variable table begins with a 4-byte field
which gives the length of that table. The length includes
the 4 bytes of the length field.

The variable tables give information about the variables
in the current BASIC environment. The tables are:

1. Numeric id table: contains the names of numeric vari-
ables as entered by the user. There are no delimiters
or length fields (except the length field of the entire
table). The variable names are stored in ASCII form,
one right after another.

2. Numeric sort table: lexicographically sorts the numeric
variables. This information is useful because when a
BASIC program is LOADed or RUN, the variables in the
incoming program must be merged with the variables in
the current environment. Sorting greatly speeds up
LOADs and RUNs.

3. Numeric offset table: contains two-byte fields which
are used as offsets into the numeric id table to
determine where one variable id ends and the next be-

gins.

4. String id table: similar to the numeric id table, used
for strings and numeric arrays.

5. String sort table: similar to the numeric sort table,
used for strings and numeric arrays.

6. String offset table: similar to the numeric offset
table, used for strings and numeric arrays.

7. Numeric location table: gives location of the data of a
numeric BASIC variable.

8. String location table: similar to numeric location
table, used for strings and numeric arrays.

c-1 M6262A

NOTES

CHARACTER CODES

APPENDIX D - ASCII CHARACTER CHARTS

Character representations differ slightly on BOSS/IX and
On BOSS/IX systems,

BOSS/VS systems.

represented by low-order,
eighth bit turned off
ters are represented by high-order,
with the eighth bit turned on

(b8=0)

characters are
7-bit ASCII codes, with the
On BOSS/VS systems,

charac-

8-bit ASCII codes,
(b8=1) .

Tables D-1 and D-2 show the character codes for BOSS/IX

and BOSS/VS systems, respectively.
BINARY 0000 0001 |0010| oe11 | 0100 0101 | 03100111 | 1000 1001 [1010{ 1011 [1100 1501 | 1110} 1111
Is8 —> - '

weV X O 11215(419|6(/718|9]A|BIC|DIE|F
3000 Onmsmsrxm_zofammaaas Wl F | |FF{CR]ISO| S
' <O | <1o [<25 | <35 | <a> | <85> | <85> | <> | <8 | <> [<105 <115<125| <135 {145 <15
9001']MDCIDC20CSDC4NAKSYNETBCANNSUBESCFSGSRS'US
<16>{<17>[<18> | <19> | <200 [<21> | <22> [<235 | < 24> [<25> | <262 | <27> <28>| <29>{ <30>[<31>
0010259!"#$%&'()*+,--/
<32 <33 [<I4> | <352 [<I6 | <7D <FB> | €T | <4D> | <M > | <A2> | <A3> [<> [AT | CAB> | <4T>
m,,30123455739.;<=>?
<485 | <493 | <50> [<515 [<525 [<53> | <54 [<55> | <56> | <57> | «<58>{<59> [<60> | <6I>| <62> | <63>
mm4@ABCDEFGHIJKLMNO
<64>1<65> | <66> | <B7> | <6B>|<BO>| <70>|<T1>1<72>|<73>[< 4> |<75> |<76>[<T7> | <7B>[<79>

wor [P{QIRISITIUIVIWIXIYTZI[N] A)_
/1 <B0>|<B1>|<B2>| <B3>]<BA>|<B5>| <BE> | <BT>| <BB>| <BI> | <90>[<91> [<92>| <937 | <94>[<95>
mwB‘obcdefghi_jkllmno
<96>| <97>{ <98>] <995 K 1005 1015k 1025K 1035} 1045k 1055 1062k 1072 1085 109> 1109111
01117pqrstuwwxyzi|}~DEL
125K 11351 14K 1155 1161 175K 1 183K 1193 1200 12156 12256 123K 1 243 1255K 126K 127

Table D-1. BOSS/IX Low-order ASCII Character Codes
D-1 M6262A

ASCHI Code Set

1

1010

1011

1100

1101

1110

1111

‘(94-31 0000] 0001] 001010011] 0100] 0101|0110 | 0111

1000

panJ 0 | 12]s]]s]e
g | NUL [SOH [STX | ETX | EOT |ENG| AGK [BEL
[128] | (129] | (130] | (131] | (132) | 1133} | (1341 | (135]

1000 | 1001
8|9

10
(A

11
B)

12
©

13
(D)

14
(&

15
3]

_Bs THT
[136] |[137)

LF &
(138

[139]

FF
[140)

CR
[141]

SO
[142]

S
[143]

1001l 9 DLE | DG1 | DC2| DC3 | DC4 [NAK| SYN | ETB

CAN | EM
[152) {(153)];

SuB

ESC
[155]

FS
(156]

GS
[157)

RS
[158]

us
[159]

% | &

[144] | [145]] [146) | (1471 [148) |[149] | (150) [151)
1010 10 |space} ! » # $!
(A}][160] { [161] | [162] | [163] | [164] |{165] | [166] | [167)

{)
(168} | [169)

[154)

+
[171)

(173)

[174)

1011

3 4]

1 2 6 7
(B[[176] {1771 | [178) |(179] | [180] {[181}] [182] [{183]

8 9
[184) | [185]
]

{170]
[186)

l‘éﬂ

[172]
=
(188

(189]

-
[190]

[175)
? |
[191}

e | B .| C.
1199)c)| 1182] | 193] | (194 | 1195

D

- E[F| G
(196} |[197}} [198] 1 (199]

H . :
[200] | [201)

1202]

(203}

L
[204]

.[2051

1206)

[207]

13

"'mPQHSTuvw
") 1208) | (208} | (210] [(211) | [212] | 213) | (214] |{215]

X Y
[218] | [217]

- Z
[218]

{
{219]

\.
[220]

1
[221]

|
[222)

[223)

1110 14 a b c d | o)
(E) | {224] | [225] | [226] | [227] | [228] |[229] | [230] [[231]

f

h
[232] | [233]

|
[234]

k
[235]

{236]

m
{237]

n
[238]

0
[239]

15

x Ty
[248) | [249]

-z
(250]

{
[251)

Y
[253]

{2;';4]

DEL
[255]

41“1 P q | r s t - f.u v w
(F) | (240] |{241) | [242] | [243] | [244] |[245] [246} [247)

Table D-2. BOSS/VS

EXPLANATION OF

standard meanings.

NUL NULL

SOH Start of Heading
STX Start of Text
ETX End of Text

EOT End of Transmission
ENQ Enquiry

ACK Acknowledge

BEL BELL

BS Back Space

HT Horizontal Tab
LF Line Feed

VT Vertical Tab

FF Form Feed

CR Carriage Return
S0 Shift Out

ST Shift In

DLE Data Link Escape

M6262A

tzslél_

High-order ASCII Character Codes

The early codes are unprintable characters.
CODES representations shown in the charts have the following

The

DC3
DC2
DC1
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
F'S
GS
RS
Uus
DEL

Device Control
Device Control
Device Control
Device Control 4

Negative Acknowledge
Synchronous Idle

End of Transmission Block
Cancel

End of medium

Substitute

Escape

File Separator

Group Separator

Record Separator

Unit Separator

Delete

w N =

M6262A

M6262A

NOTES

APPENDIX E - KEYWORD LIST

The following list includes all the Business BASIC 86 KEYWORDS.

ABS

ADD
ADDE
ADDR
ALIAS
ALL

AND

ASC
ASCII
ATH

ATN
ATTR
BEGIN
BIN

BLK

BNK
CALL
CHAR
CHR
CLASS
CLEAR
CLOSE
CONSOLE
CONSOLELOCK
COPIES
COoS

CPL

CRC
CREATE
CSW

CTL

DAY

DEC

DEF
DELETE
DEVINFO
DIM
DIRECT
DOM
DROP
DSZ
EDIT
ELSE
ENCRYPT
END
ENDIF
ENDTRACE
ENDTRANS
ENTER

EPT
ERASE
ERR
ERROR
ESCAPE
EXCEPT
EXECUTE
EXIT
EXITTO
EXP
EXTEND
EXTRACT
EXTRACTRECORD
FI

FID
FIELD
F'IND
FINDRECORD
FLD
FLOATING
FLOATINGPOINT
FMT
FMTINFO
EN

FOR

FPT

GAP

GO

GOSUB
GOTO
HELP

HSA

HSH

HTA

IF

IND
INDEXED
INIT
INITFILE
INPUT
INPUTRECORD
INT

IOL
IOLIST
IOR

IS%Z

KEY

LEN

LET

LIB

LIST
LISTPROGRAM
LOAD

LOCK

LOG

LRC

LST

LVL

MAKE
MAKEPROGRAM
MAX

MERGE

MIN

MOD

MSG

MULTI
NEXT

NO
NOEXTEND
NOT

NUM

ON

OPEN

OPTS

PACK

PFX

PGM

PNM

POINT

POS

PRC
PREFIX
PRECISION
PRINT
PRINTRECORD
PRIORITY
PROGRAM
PSAVE

PSZ

PUB

QUIT
RANDOMIZE
READ
READRECORD
RECORD
RELEASE
REM
REMOVE

RENAME
RESET
RETAIN
RETRY
RETURN
RND

RUN
SAVE
SEO
SEQUENCE
SERIAL
SET
SETCTL
SETDAY
SETERR
SETESC
SETFIELD
SETTIME
SETTRACE
SETTRANS
SGN

SIN

SIzZ
SORT
SPX

SOR

SSN

SSZ
START
STEP
STOP
STR
STRING
SYNTAX
SYS
SYSTEM
TABLE
TBL

TCB
THEN
TIM
TIME
TRACE
TRANS
TRX

TSK
UNLOCK
UNPACK
UNT

VMERGE

WAIT

WHO

WRITE
WRITERECORD

XOR

M6262A

M6262A

NOTES

OVERVIEW

Feature

WO = e—

ABS
ADD
ADDE
ADDR
ALL

AND

AND
ASC
ASCIT
ATH
ATN
ATTR
ATTR=

ATTR=

BEGIN
BIN

BLK=

IX

IX
IX
IX
IX
IX

IX

IX

IX

IX

IX
IX

APPENDIX F - BUSINESS BASIC FEATURE SUMMARY

This appendix provides a summary of the Business BASIC

features.

each level of Business BASIC,
brief description of the feature.

+ o+ |

not present
differences exist
has more features
system specific
ignored/minimal support

available in pre-BB86 versions of BOSS/IX
available in pre-BB86 versions of BOSS/VS
available in BB86

BUSINESS BASIC FEATURE SUMMARY

Availability

VS
VS
VS
VS
VS
VS ig

VS ig
VS

VS

VS

VS

VS
VS

VS new

VS
VS

VS ig

BB86

BB86

BB86
BB86
BB86
BB86

BB86
BB86

BB86
BB86

Type
statement
statement
statement
statement
function
directive
directive
directive

special

function

operator
function
function
function
function
function
clause

clause

directive
function

clause

It includes the availability of the feature in
the statement type, and a
The key used is:

Description

Perform system command
Abbreviation for EDIT
Abbreviation for LIST
Abbreviation for PRINT
Return absolute value
Cache a program

Set up error handling
program

Cache a program & make
it resident

used to specify an
entire array

Combine the bits of two

strings

Condition within IF
statements

Convert character to
number

Maps character to ASCII
code

Convert "hex" to Shex
Arctangent function
Return file information
Used within CREATE for
file info

Used within OPEN for
spool info

Reset system

Return binary string
value

Specify block size on
OPEN

M6262A

Feature

BNK=
CALL

CHAR

CHR
CLASS=

CLEAR
CLOSE
CONSOLE
LOCK
COPIES=

COS
CPL

CRC

CREATE
CsSw

CTL

DAY
DEC

DEF FNx

DELETE

DEVINFO

DIM
DIRECT

DOM=

DROP

DSZ

EDIT

ENCRYPT

END
END=

M6262A

IX

IX
IX

IX

IX

IX

IX

IX

IX
IX

IX

IX

IX
IX

IX

IX

IX

IX

IX

IX
IX

Availability

VS
VS

VS
VS

VS

VS

VS

VS

VS

VS

VS
VS

VS

VS

VS

VS

VS

VS

VS
VS

ig

ig

ig

BB86
BB86

BB86

BB86
BB86

BB86

BB86

BB86
BB86

BB86

BB86
BB86

BB86
BB86
BB86

BB86
BB86

BB86

BB86

BB86
BB86
BB86

Type

clause
directive

function

function
clause

directive
directive

directive
clause

function
function

function

directive
variable

variable

variable
function

directive
directive
variable

directive
directive

I/0 option
directive
variable

directive
directive

directive
I/0 option

Description

Set memory bank
Transfer control to
another pgm

Convert number to
BOSS/IX,/VS character
Number to character
Set spooler class on
OPEN

Clear a program's
variables

Release file or device

Inhibit Console mode

Set copies to spool on
OPEN

Cosine function

Return compiled form of
source

Return cyclic redundancy
check

Create a new file

Return called program
flag

Return last field

te rminator

Return system date
Convert binary string to
number

Define numeric/string
function

Remove statement (s) from
program

Return device
information

Dimension an array or
Create a single-keyed
file

Transfer if dup or
missing key

Remove program from
cache

Return size of data

area left

Change a program state -
ment

Encrypt a BASIC program
Terminate a program
Transfer if end of file

Feature
END=

ENDIF
END TRACE

END TRANS
ENTER

EPT

ERASE
ERR

ERR
ERR=
ERROR
ESCAPE
EXECUTE
EXIT

EXITTO
EXP

EXTEND
EXTRACT
FI

FID
FIELD
ALIAS

FILE

F'IND

FLOATING

POINT

FMT=

FMTINFO

FNx

FNx$S

FOR/NEXT

IX

IX

IX

IX
IX

IX
IX
IX
IX
IX
IX

IX

IX
IX

IX

IX

IX

IX

IX

IX

IX

Availability

VS

VS

VS

VS
VS

VS
VS
VS
VS
VS
VS

VS
VS

VS
VS
VS

VS

VS

VS

VS

VS

VS

VS

BB86

BB86
BB86

BB86
BB86

BB86

BB86
BB86

BB86

BB86

BB86
BB86

BB86

BB86

BB86 +

BB86

BB86 +

BB86

BB86

BB86

BB86

BB86

BB86

Type
clause

directive
directive

directive
directive

function

directive
variable

function

I/0 option
directive

directive
directive

directive
function

directive
directive
directive
function
M/K

directive
directive

directive

directive

M/K
option
M/K
function
function

function

directive

Description

Allowed within an IND
function

Replaces FI (end of IF)
Terminate SETTRACE
listing

Terminate translation
Receive arguments from
CALL

Return power of ten of
argument

Delete disk file

Return number of last
error

Return position of error
in list

Transfer on error

List last error
Interrupt program
Generate/modify state-
ments

Terminate a CALLed
program

Break out of POR/GOSUB
Returns the exponential
value requested

Begin extended mode
Read and lock

Show end of most recent
IF statement

Return file information

Reassign meaning of
field variable

Uses string to define
file type

Read, don't advance if
missing

Initate floating point
mode

Specify format string
for file

Return open file's
format string

User defined numeric
function

User defined string
function

Loop control

M6262A

Feature
FPT

GAP
GOSUB
GOTO

HELP
HSA

HSH
HTA
IF/THEN/
ELSE
IF/...
/ENDIF
IND

IND=
INDEXED
INITFILE
INPUT
INT

I0L=
IOLIST

IOR

ISZ=
KEY

KEY=

LEN
LEN=

LET

LIB
LIST
LIST
PROGRAM

LOAD

LOCK

M6262A

IX

IX

IX

IX

IX

IX
IX

IX
IX
IX
IX
IX

IX
IX

IX
IX

IX

IX
IX

IX

IX
IX

IX

IX

IX

IX

IX

Availability

VS

VS

VS

VS

VS
VS

VS
VS

VS
VS
VS
VS
+ VS
VS
VS
VS

VS
VS

VS

VS

VS

VS
VS

VS

VS

VS

ig

BB86
BB86
BB86

BB86

BB86
BB86

BB86
BB86
BB86
BB86
BB86
BB86
BB86
BB86

BB86
BB86

BB86

BB86
BB86

BB86
BB86

BB86

BB86
BB86
BB86

BB86

Type
function
function
directive
directive

directive
function

function
function

directive
directive
function
clause
directive
directive
directive

function

I/0 option
directive

function

clause
function

clause

function
clause

directive
directive
directive
directive
directive

directive

Description

Return fractional part
of expression

Generate odd-parity
string

Transfer into internal
routine

Transfer to another
statement

Give on-line help
Return highest sector
available

Return hash of argument
Convert hex to "hex"

Conditional control

Conditional control
Return position in file
Specify position in file
Create a relative file
Initialize existing file
Read

Return whole part of
argument

Use an IOLIST

Define list of
variable/values

Combine bits of two
strings

Set I/0 size

Return key of next
record

Specify key on I/O
operation

Return length of string
Specify length range on
input

Assign value to a
variable
Include 'C
functions
Print statement (s)

library

Convert program to a
serial file

Bring a program into
memory

Protect a file from
others

Feature
LOG

LRC

LST

LVL
MAKE
PROGRAM
MAX
MERGE
MIN

MOD

MSG=
MULTI

NEXT

NO EXTEND
NOT

NUM
ON. .GOSUB

ON. .GOTO

OPEN
OPTS=

PACK
PFX
PGM
PGM (O)
PNM

POS
PRC

PRECISION
PREFIX

PRINT
PRIORITY"

IX

IX

IX

IX

IX

IX

IX

IX
IX

IX

IX
IX

IX

IX

IX

IX

IX
IX

IX

IX
IX

Availability
VS

VS

VS
VS
VS
VS

VS

VS
VS

VS
VS

VS

VS

VS

VS
VS

VS

VS
VS

BB86

BB86

BB86
BB86

BB86
BB86

BB86

BB86

BB86
BB86

BB86

BB86

BB86

BB86 7

BB86
BB86

BB86

BB86 +

Type
function
function
function
variable
directive
function
directive
function
function
clause

M/K
directive

directive

directive
function

function
directive

directive

directive
clause

M/K
directive

variable
function

variable
variable

function
variable

directive
directive

directive
clause

Description

Returns the logarithm of
the number specified
Return longitudinal
redundancy

Convert compiled state-—
ment into list format
Return system level

Convert serial file to
program file

Maximum argument value
Add serial file to
Minimum argument value
Return remainder of
division

Specify messages

Create a multi-keyed
file

Used with FOR for
looping

Begin no extend mode
Return inverse of a
string

Convert ASCII to number
Conditional transfer to
subroutine

Conditional transfer to
statement

Access a file or device
Set spooler options on
OPEN

Pack variables into
buffer

Return user's prefix
list

Return compiled code
Return name of pgm in
memory

return name of pgm in
memory

Returns string position
Returns current
precision

Set number of digits
rounded

Set user's prefix list
Print to file or device
Set priority of spooler
on OPEN

M6262A

Feature
PROGRAM
PSAVE
PSz

PUB
QUIT
RANDOMIZE
READ
RELEASE
REM
REMOVE

RENAME
RESET

RETAIN
RETRY

RETURN
RND

RUN

SAVE
SEQ=
SEQUENCE
SERIAL
SETCTL
SETDAY
SETERR
SETESC

SETFIELD

SETTIME
SETTRACE

SETTRANS
SGN

SIN

SIZ=

SORT

M6262A

IX

IX
IX

IX
IX
IX
IX

IX
IX

IX

IX

IX

IX

IX

IX
IX
IX
IX

IX

IX

IX

IX

IX

IX

Availability
VS

VS
VS

VS
VS
VS
* VS

VS
VS

VS

VS

VS
VS

VS
VS
VS
VS
VS
VS
VS

VS

VS

VS
Vs
VS

BB86
BB86

BB86

BB86
BB86
BB86
BB86

BB86
BB86

BB86
BB86

BB86

BB86
BB86

BB86

BB86
BB86
BB86
BB86
BB86
BB86

BB86
BB86

BB86
BB86

BB86

BB86

Type

directive
directive
variable
function
directive

directive

directive
directive
directive
directive

directive
directive

M/K I/0
Option
directive

directive
function

directive
directive
clause
directive
directive
directive
directive
directive
directive
M/K
directive
directive
directive
directive
function
function

I/0 option

directive

Description

Create a BASIC file
Protected SAVE

Return program size
Return public programs
Close files and exit
BASIC

Starting value for a
pseudo-random number
Read data

Close files and log off
Remark

Delete a record from
keyed file

Rename a file

Reset some task
variables

Use "raw" I/0 buffer

Transfer back to last
error statement

Return after GOSUB
Returns a pseudo-random
number

Execute/continue a
program

Save pgm in memory to a
file

Positions tape on an
OPEN

Begin auto statement
numbering

Create a sequential file
Branch when ctrl-Y

Set system date

Branch when error en-
countered

Branch when escape
encountered

Add/Remove keysets on
MULTI file

Set system time

List statements as they
execute

Begin translation
Return sign of value
Sine function

Set maximum size of
input

Creates a "sort" keyed
file

Feature
SPX
SOR
SSN
ssz
START
STOP
STR
STRING
SYNTAX
SYS
SYSTEM
TABLE
TBL
TBL=
TCB
TIM
TIM=

TRANS
TRX

TSK

UNLOCK
UNPACK

UNT
VMERGE
WAIT
WHO
WRITE
XOR

nmwnn

functions

IX

IX

IX

IX

IX

IX
IX
IX
IX
IX
IX

IX
IX

IX

IX

IX

IX

IX

IX

IX

VS
VS
VS
VS
VS
VS

VS

VS
VS
VS
VS
VS
VS

VS
VS

VS

VS

VS

VS

VS

VS

VS

vs

Availability

ig

BB86 7

BB86

BB86

BB86

BB86
BB86
BB86 7
BB86
BB86
BB86
BB86 7
BB86
BB86

BB86
BB8?

BB86
BB86

BB86

BB86

BB86 ?

BB86 +

BB86

BB86

Type
variable
function
variable
variable
directive
directive
function

directive

directive

directive

function
I/0 option

variable
variable

I/0 option

function
variable

function
directive
M/K
directive
variable
directive
directive
variable

directive

function

Description

Return system prefix
list

Returns the square root
of the number specified
Return system serial
number

Return sector size

Reset system/start tasks
Terminate program

(like END)

Convert number to ASCII
string

Create a UNIX "stream"
type file

Validate syntax of
expression

Return 0/S level

Execute system command
Define table translation
Return table translation
Perform table
translation on I/0
Return task information
Return system time

Set timeout wvalue for
I/0

Return translated string
Return current transla-
tion file name

Return device
information

Free a locked file
Unpack from buffer to
variables

Return lowest available
lun

Merge in a "STRING" type
file

Wait for specified
number of seconds

Return logon account's
name

Output to a file or
device

Exclusive OR of two
string

Specifies a string with
one "

Optional $ at end of
string function

M6262A

M6262A

NOTES

Format

CSW

CTL

DAY

DEVINFO

ERR (code-1, ..., code—n)
PNM

PRC

PSZ

SSN

SYS

TCB (numeric expr 0-14)
TIM

TRX
UNT
WHO

APPENDIX G — BUSINESS BASIC 86 QUICK REFERENCE

SYSTEM VARIABLES
OPERATION

Return CALLed program flag
Field terminator last used
Current system date

Return device information
Error that occurred last
Program currently in memory
Current precision

Return program size

System Serial Number

BASIC release and version levels
Task information

Current system time

Current translation file name
Lowest unused logical unit number
Return logon account's name

Additional Variables For BOSS/IX Systems:

DSZ
ISZ=recsz
PFX

Return size of data area left
Set redefined record size
Return user's prefix list

Additional Variables For BOSS/VS Systems:

DSz
PFX
SPX
SS7Z (disk number)

Format

DOM=stno

END=stno

ERR=stno
IND=numeric expr
IOL=stno
KEY=field.var# expr
LEN=minimum, maximum
RETAIN

SEQ=numeric expr
SIZ=numeric expr
TBL=stno
TIM=numeric expr

Always returns 32,767

Return user's prefix list
Return system prefix list
Returns 1024 bytes per sector

INPOT/OUTPUT OPTIONS

OPERATION

Branch if duplicate or missing key

Branch at end of file

Branch on error

Specify index of record to be accessed
Specify stno of the IOLIST to be used
Specify key of record to be accessed
Specify length range of variable

Use raw I/0 buffer

Positions tape on an OPEN

Set maximum characters to be input
Specify TABLE statement number to be used
Specify number of seconds allowed for input

G-1 M6262A

Additional I/0 Options For BOSS/IX Systems:

CLASS= "str-expr" Set spooler class on OPEN
OPTS= "str—-expr" Set spooler options on OPEN

Additional I/0 Options For BOSS/VS Systems:

ATTR="str—-expr" Use with OPEN to specify
Spooler (print job) attributes
Set spooler class on OPEN
CLASS="str—-expr"

OOPIES=int-exr Use with OPEN to specify
number of copies to be printed
PRIORITY=int-expr Set priority of Spooler on
OPEN
OPERATORS
- minus
+ plus
* multiplied by
/ divided by
~ raised to the power of (exponentiation)
AND conjunction
OR disjunction
= is equal to
> is greater than
< is less than
<> is not equal to
>= or => is greater than or equal to
<= or =< is less than or equal to

BASIC COMMAND LINE ARGUMENTS
For BOSS/IX Systems:

username> basic {-h} {-nr} {pgm=} {s=} {-e} {-g } {-x} {lib=} {trans=}
{'command string'}

For BOSS/VS Systems:

EXTEND Mode NO EXTEND Mode
!BASIC {pgm} {RUN=pgm}
{OOMMAND="string"'} IBASIC
IBASIC >NO EXTEND
>]

M6262A G-2

FUNCTIONS

Format

ABS (numeric expression)

AND ("str—expr", "str-expr")
ASC ("str-expr" {,ERR=stno})

ASCII ("str-expr" i,ERR=stno}

ATH

ATTR

BIN

CHAR

CHR
CRC
DEC
EPT

("str-expr" {,ERR=stno})
(fileno ,"{ALL} { NAME} { OWNER}
{ USAGE RIGHTS} { ORGANIZATION}
{ RECORD_SIZE} { RECORDS_ALDOWED}
{ RECORDS USED} { KEY SIZE}
{ INITIAL} { GROWTH} { LONG}

{ SHORT} { WRITE THRU}" {,ERR=stno})

(num-expr, int-expr)
(num—-expr {,ERR=stno})

(num-expr {,ERR=stno}
("str-expr" {,2-byte string}
("str—-expr" {,ERR=stno})
(num—expr)

FMTINFO (fileno {,field-selector

FNx
FPT
GAP
HSH
HTA
IND

INT
ICR
KEY

LEN
LRC

MOD
NOT
NUM

POS

SGN

STR
TBL

{,info-selector}})
{$} (arg-list)
num—expr)
'str-expr")
'str-expr" {,2-byte string})
"str—expr")
fileno {,END=stno} {,ERR=stno})

Ll
Ll

(
(
(
(
(

(num-expr)

("str-expr", "str-expr")
(fileno {,ERR=stno}
{,END=stno} {, IND=recno})
("str—-expr")

("str—-expr")

(num—-expr—a, num—expr-b)
("str—-expr")
("str-expr" {,ERR=stno})

(scan—-str relational-op
target-str {,step })
(num-expr)

(num—-expr {:mask})
("str—-expr", stno)

TRANS ("str—expr")

XOR

("str-expr", "str-expr")

OPERATION

Absolute value

Combine Strings

String to ASCII decimal value

Returns ASCII numeric code
"hex" to Shex

Return file information

Binary string value

Convert ASCII numeric code to
character

Convert num-expr to ASCIT
Return cyclic redundancy check
Binary to signed decimal
Return exponent of num-expr
Return multi-keyed file format
information

User defined functions
Fractional part of num-expr
Generate odd-parity string
HASH; data integrity check
Convert Shex to "hex"

Index of current record
position

Integer part of num-expr
Combine bits of two strings
Key of current record position

Length of "str-expr"
Longitudinal redundancy check
information

Return remainder of division
Inverse of string, bit-by-bit
Convert "str-expr" to numeric
value

Return string position

Sign of num-expr

Convert num-expr to string
Translates string expression
Return translated string
Exclusive OR of two strings

M6262A

FUNCTIONS (cont'd)

Additional Functions For BOSS/IX Systems:

CPL ("str—expr"

{,"str-expr"} Return compiled form of source

{,str-var} {,ERR=stno})

FID (fileno)

LST ("str—-expr"
{,ERR=stno})

LVL (num-expr)

PGM (stno)

PUB (int-expr)
TSK (int-expr)

Return file information

{, 'str-expr"} Convert compiled statement
into list format
Return system release level
Return compiled format of
stno; pgm name if stno=0.
return public programs
Return device information

Additional Functions For BOSS/VS Systems:

ATN (num—-expr)
COS (num—expr)
EXP (num—expr)
FID (fileno)
LOG (num—expr)

Arctangent function

Cosine function

Return exponential value
Return file information
Return logarithm of num-expr

MAX (num-exprl, num-expr2 Maximum argument value
{, ..., num—expm })

MIN (num-exprl, num-expr?2 Minimum argument value
{, ..., num—expm })

RND { (num-expr) }
SIN (num—-expr)
SQOR (num—-expr)

ERROR
NUMBER
00

01

02

03

04

05

06

07

09

10

11

12

13

14

15

16

17

18

M6262A

Return a pseudo-random number
Sine function
Return square root of num-expr

ERRORS

MESSAGE

FILE/RECORD/DEVICE BUSY OR INACCESSIBLE

END OF RECORD

END OF FILE

DISK READ ERROR

DISK NOT READY

PERIPHERAL DATA TRANSFER ERROR

INVALID DISK DIRECTORY

CORRUPTED FILE

POWER FAILURE

ILLEGAL FILE NAME SIZE OR USAGE/ILLEGAL OVERLAID CALL
MISSING OR DUPLICATE KEY

MISSING OR DUPLICATE FILE NAME/NON-CONFIGURED DEVICE
IMPROPER FILE OR DEVICE ACCESS

IMPROPER FILE OR DEVICE USAGE

DISK SPACE ALLOCATION ERRORS

DISK OR PUBLIC PROGRAMMING DIRECTORY IS FULL

INVALID PARAMETER/NON-CONFIGURED DISK

ILLEGAL CONTROL OPERATION

ERRORS (cont'd)

ERROR

NUMBER MESSAGE

19 INVALID PROGRAM SIZE

20 STATEMENT SYNTAX

21 INVALID STATEMENT NUMBER

23 MISSING VARIABLE/NON-DIMENSIONED STRING

24 DUPLICATE FUNCTION NAME

25 UNDEFINED FUNCTION

26 INCORRECT VARIABLE USAGE

27 RETURN WITHOUT GOSUB/DELETE WITH ACTIVE GOSUB OR FOR-NEXT

28 NEXT WITHOUT FOR

29 INVALID MNEMONIC

30 USER PROGRAM INCORRECT CHECKSUM

31 INSUFFICIENT MEMORY WITHIN TASK

32 STACK OVERFLOW

33 INSUFFICIENT MEMORY CAPACITY

34 VDT BUFFER OVEREFLOW

35 COMPILER OUT OF MEMORY

36 CALL/ENTER VARIABLE MISMATCH

38 ILLEGAL COMMAND IN A PUBLIC PROGRAM

39 ESCAPE IN A PUBLIC PROGRAM

40 NUMERIC VALUE OVERFELOW

41 INVALID INTEGER RANGE

42 NON-EXISTENT NUMERIC SUBSCRIPT

43 INVALID FORMAT MASK SIZE

44 STEP SIZE OF ZERO

45 INVALID STATEMENT USAGE

46 INVALID STRING SIZE

47 SUBSTRING REFERENCE OUT OF RANGE

48 INVALID INPUT

49 NON-TRANSLATABLE STATEMENT

50 GENERAL MEMORY ERROR

54 OPEN OF A SERIAL FILE WITH INVALID HEADER/PROGRAM OR FILE HAS
INVALID FORMAT

59 NON-BASIC ERROR OCCURRED

60 FEATURE NOT YET IMPLEMENTED

61 RESTRICTED OPERATION ON A RESTRICTED-ACCESS PROGRAM

62 INTERNAL SYSTEM LIMIT EXCEEDED

63 SOURCE BUFFER/SYMBOL TABLE OVERFLOW

64 FILE LACKS INTEGRITY

66 FILE SYSTEM HAS NO MORE CACHE RECORDS

68 BAD SECOND ARGUMENT TO CPL OR LST

69 MISSING VARIABLE ID

70 THIRD ARGUMENT TO CPL FUNCTION IS NOT AN ACTIVE VARIABLE

71 THIRD ARGUMENT TO CPL FUNCTION IS NOT LONG ENOUGH

90 INVALID JUMP INTO PROGRAM CODE

91 CONSOLE-MODE FOR WITHOUT NEXT

95 LAN ERROR

98 SPOOLER ERROR

99 COMM ERROR

100 BASIC COMPILER INTERNAL ABNORMALITY

103 CATASTROPHIC READ FAILURE/FILE POINTERS DAMAGED

G-5 M6262A

ERRORS (cont'd)

ERROR
NUMBER MESSAGE
104 CATASTROPHIC DISK FAILURE/FILE POINTERS DAMAGED
123 CATASTROPHIC PARITY ERROR/FILE POINTERS DAMAGED
124 PARITY ERROR
126 CTL+Y KEY USED
127 ESCAPE
254 PROGRAM SAVE ERROR
255 UNKNOWN ERROR
MNEMONICS
MNEMONIC FUNCTION
@ (x) Horizontal position
Q(x,vy) Horizontal & vertical position
'10" 10 pitch
'16" 16 pitch
'6L" 6 lines per inch
'8L"' 8 lines per inch
'B1" Bin 1 (BOSS/IX only)
'B2" Bin 2 (BOSS/IX only)
'BB' Begin blinking
'BE’ Begin echo
'bg' Begin to generate error 29
'BI' Begin input transparency
'BO" Begin output transparency
'BR' Set reverse video
'BS" Backspace
'BT' Begin Input Buffering
'BU" Begin underline
'CE' Clear screen to end of page
'CE! Clear foreground
'CH' Move cursor home (0,0)
'CI' Clear input buffer
'CL" Clear line
'CR' Carriage return
'CS' Clear screen
'DC! Delete character
'dn' Cursor down (BOSS/IX only)
'DACS' Disable alternate character set
'DBLW ' Double width print
'DBLH' Double height print
'DPM' Reset to default character printing mode
'EB' End blinking
'EE' End echo
'EG' End generation of error 29
'ET' End input transparency
'EL End Load (VFU)
'ED' End output transparency
'EP' Expanded print
'EPM' Even dot plot mode

M6262A G-6

MNEMONIC

IERI
lEsl
'ET!
IEUI
'FE
'IC

IKLI
!KU!
ILD]
'LE!
'L
IL'I‘I
'NL'
IOPI

'OUT (n) '

!PE!
IPGI
'PM!
'PS!

'RB'
'RC
IR'I‘I
‘82‘
|S3l
IS4I
VS5V
IS6I
IS7I
ISSI
'SACS
'SB!
'SET6!
'SETS8'
'SF'
!SL!
ISNI
lsPl
'SpPM1'!
'SpPM2"'

'SPM3'
'SpM4!
'SPM5'!
'35
'sw!
'TL!
TP
'TR!
'Tg!
'Up!
'YT!
'WPM'

MNEMONICS

FUNCTION

End reverse video

Escape

End input buffering

End underline

Form feed

Insert character

Keyboard lock

Keyboard unlock

Line delete

Line feed

Line insert

Cursor left (BOSS/IX only)
New line

Overprint

Output (n) characters without
End protect mode

Print screen

Begin plot mode
Start protect mode
Ring bell

Read cursor position
Cursor right
Slew to channel
Slew to channel
Slew to channel
Slew to channel
Slew to channel
Slew to channel
Slew to channel
Start alternate character set
Start background mode

6 LPI

8 LPI

Start foreground mode

Start laod (VFU)

Screen narrow

O Joy 0w

Superscript
Set print mode
Set print mode
Set print mode
Set print mode
Set print mode
Subscript
Screen wide
Transmit line
Transmit line protected
Transmit terminal screen
Transmit screen protected
Cursor up (BOSS/IX only)
Vertical tab

Letter quality emulation mode

g s w N

G-7

DIRECTIVES
BEGIN { {EXCEPT} var-list}

CALL "prog ID" {,ERR=stno} {,arg-list}

CLEAR { {EXCEPT} var—-list}

CLOSE (fileno {,ERR=stno} {,IND=num-expr})

CONSOLE LOCK {"str-expr" {,MSG="str-expr"}}

CREATE ATTR= "str-expr" {,EM T="str-expr"} {,ERR=stno}

DEF FNx (var—-list)=arithmetic-expr

DEF FNx$ (var-list)="str-expr"

DELETE {first stno} {,} {last stno}

DIM array-name (rangel {,range2 {,range3}})

DIM string-name (int-expr {,"str-expr"})

DIRECT "file-id", keysz, recno, recsz {,ERR=stno}

ENCRYPT "source prog-id", "destination prog-id" {,ERR=stno}
END
ENDTRACE
ENDTRANS
ENTER arg-list
ERASE "file-ID" {,ERR=stno}
ESCAPE
EXECUTE "str-expr"
EXIT {int-expr}
EXITTO stno
EXTRACT (fileno {,RETAIN} {,ERR=stno} {,END=stno} {,DOM=stno} {,IND=int-expr}
{,key={{field-var} } expr} {,TBL=stno} {,SIZ=int-expr}
{, TIM=num-expr}) {arg-list} {,IOL=stno}
EXTRACT RECORD (fileno {,ERR=stno} {,END=stno} {,DOM=stno}
{, IND=int-expr} {,key={{field-var} } expr} {,TBL=stno}
{,SIZ=int-expr} {,TIM=int-expr}) string-variable

FIELD ALIAS (logical unit [,ERR=stmt_num]) field var# [=] name_string$
[, field var# [=] name_string$...]
FIND (fileno {,RETAIN} {,ERR=stno} {,END=stno} {,DOM=stno}

{,key={{field-var} } expr} {,TBL=stno} {SIZ=int-expr})
{arg-1ist} {,IOL=stno}

FIND RECORD (fileno {,ERR=stno} {,END=stno} {,DOM=stno} {,IND=int-expr}
{,key={{field-var} } expr} {,TBL=stno} {,SIZ=size})
string-variable

FLOATING POINT

FOR numeric-variable = num-expr TO num-expr {STEP num-expr}

GOSUB stno
GOTO stno

IF log-expr {THEN} stno-a {ELSE stno-b} {ENDIF}
INDEXED "file-ID", recno, recsz {,ERR=stno{

INITFILE "file-ID" {,ERR=stno}

INPUT { (fileno {,RETAIN} {,ERR=stno} {,END=stno} {,DOM=stno} {,IND=int-expr}
{,key={{field-var} } expr} {,TBL=stno} {,TIM=time-expr}
{,SIZ=int-expr})} {,mnemonic} {,string-const} {,variable} {,IOL=stno}

M6262A G-8

DIRECTIVES (cont'd)

INPUT RECORD (fileno {,ERR=stno} {,END=stno} {,DCM=stno} {,IND=int-expr}
{, key={{field-var} } expr} {,SIZ=int-expr} {,TBL=stno})
string-variable

IOLIST arg-list {fIOL=stno}

{LET} assignment-list

LIST {(fileno {,ERR=stno} {,IND=recnoj {,TBL=stno})} {stno-a} {,} {stno-b}
LIST PROGRAM "prog-id", "file-ID" {,ERR=stno}

LOAD "prog-id"

LOCK (fileno {,ERR=stno})

MAKE PROGRAM "file-ID", "prog-id" {,ERR=stno}
MERGE (fileno {,ERR=stno} {,IND=int-expr} {,TBL=stno})
MULTI "file-ID", recno {,recsz}, FMTI="str-expr" {,ERR=stno}

NEXT num-variable

ON int-expr GOSUB stno-list
ON int-expr GOTO stno-list
OPEN {INPUT} (fileno {,ERR=stno} {,SEQ=int-expr}) "file/device ID"

PACK { (fileno {,RETAIN} {,ERR=stno})} {tvar-list}

PRECISION int-expr

PRINT {(fileno {,RETAIN} {,ERR=stno} {,END=stno} {,IND=int-expr}
{,key={{field-var} } expr} {,DOM=stno} {,TBL=stno} {,TIM=time}) }
{,mnemonic} {,var-list} {,IOL=stno} {,}

PRINT RECORD (fileno {,END=stno} {,ERR=stno} {,TIM=time} {,SIZ=int-expr}

{,DOM=stno} {,IND=int-expr} {,key={{field-var} } expr}
S, TBL=stnof) string-variable
PSAVE "prod-id" {,ERR=stno}

QUIT

READ {fileno {,RETAIN } {,ERR=stno} {,END=stno} {,IND=int-expr}
{,key={{field-var} } expr} {,TBL=stno} {,DOM=stno} {,SIZ=int-expr}
{, TIM-time-expr})} {,mnemonic} {var-list} {,IOL=stno}

READ RECORD (fileno {,DOM=stno} {,ERR=stno} {,END=stno} {,IND=int-expr}
{,key={{field-var} } expr} {,TBL=stno} {,DOM=stno} {,TIM=time}
{,SIz~int-expr}) string-variable

RELEASE {"task-id"}

REM {{"}str-expr{"}}

REMOVE (fileno, {,KEY=expr} {,DOM=stno} {,ERR=stno} {,END=stno})

RENAME "old-file—-ID", "new—-file-ID" {,ERR=stno}

RESET

RETRY

RETURN

RUN {"prog-id"}

SAVE {"prog-id"} {,int-expr}

SERIAL "file-ID", av-recno, av-recsz {,ERR=stno}
SETCTL stno

SETDAY "str-expr"

G-9 M6262A

DIRECTIVES

SETERR stno

SETESC stno

SETFIELD file-ID, EM T="str-expr" {,MSG="str-expr"} {,ERR=stno}
SETTIME num-expr

SETTRACE { (fileno)}

SETTRANS "file-ID" {,ERR=stno}

SORT "file-ID", keysz, recno {,ERR=stnoj

START {pages} {,ERR=stno} {,"prog-id"} {,"task-id"}
STOP

SYNTAX "str—-expr" {,ERR=stno}

SYSTEM "str—-expr"

TABLE hexadecimal-string

UNLOCK (fileno {,ERR=stno})
UNPACK (fileno {,ERR=stno}) wvar-list

WAIT seconds
WRITE { (fileno {,RETAIN} {,ERR=stno} {,END=stno} {,DOM=stno}
{, IND=int-expr} {,key=H field-var} { expr} {,SIZ=int-expr}
{, TBL=stno} {,TIM=time})} {,mnemonic} {,variable-list} {,IOL=stno}
WRITE RECORD (fileno {,ERR=stno} {,END=stno} {,DCM=stno} {,IND=int-expr}
{, TIM=time} {,key={{field-var} } expr} {,SIZ=int-expr}
{, TBL=stno}) {string-variable}

Additional Directives For BOSS/IX Systems:

! {unquoted BOSS/IX command line}

ADDE "prog-ID" {,ERR=stno}

ADDR "prog-ID" {,ERR=stno}

DROP "prog-ID" {,ERR=stno}

EDIT stno {Cl[copy through wvalue]} {D[delete through wvalue]}
{[Rtreplace value]} {[insert value]}

ERROR

FILE "str-expr"

IF log-expr {THEN} statement-a {ELSE statement-b} {FI}

PREFIX "directory/path...directory/pathn"

PROGRAM "file ID", prog-size {,diskno} {,sectno} {,init_alloc}
{,add alloc} {,ERR=stno}

STRING "file-ID" {,diskno} {,ERR=stno}

VMERGE "file-ID"

Additional Directives For BOSS/VS Systems;

! {unquoted BOSS/VS command line}

' (Abbreviation for EDIT)

/ (Abbreviation for LIST)

? (Abbreviation for PRINT)

EDIT stno {C[copy through value]} {D[delete through value]}
{[R[replace value]} {[insert wvaluel}

M6262A G-10

DIRECTIVES

ERROR

EXTEND

FILE "str-expr" {,ERR=stno}

HELP {identifier or error number}

IF log-expr {THEN} statement—-a {ELSE statement-b} {FI}
NOEXTEND

PROGRAM "file-ID" {,prog-size}

RANDOMIZE {num-expr}

SEQfUENCE} {stno}{,integer}

G-11 M6262A

NOTES

M6262A G-12

INDEX

ABS (absolute value) function, 5-2
Add alloc (file growth allocation), 1-4
AND (combine strings) function, 5-3
Applications for Multi-Keyed files
Enhancement of existing applications, B-4
Existing applications
Sets of files, B-3
Sort utility, B-3
General, B-3
Rewriting old applications, B-4
Writing new applications, B-4
Arg-list (argument list), 1-4
Arithmetic expressions, 3-5
ASC (string to decimal) function, 5-4
ASCII character charts
Character codes, D-1
Explanation of codes, D-2
ASCII function, 5-5
ATH (ASCII to hexadecimal) function, 5-6

ATTR function, 5-7

BEGIN directive, 4-2
BIN (binary) function, 5-11
BOSS/IX specific instructions
Command line options, 10-1
Command string, 10-2
Examples, 10-3
Options, 10-1

Instructions
', 10-5
ADDE, 10-6
ADDR, 10-6
CLASS= (specify print Jjob attributes),
CPL (compile), 10-8
DROP, 10-10
DSZ (available user memory), 10-11
EDIT (line editor), 10-12
ERROR, 10-15
FID (file information), 10-16
FILE, 10-18
IF/THEN/ELSE/FI, 10-19
ISZ= (access file as if indexed), 10-20

LST (list), 10-21
LVL (release level), 10-22

10-7

OPTS= (specify printer attributes), 10-23

PFX (prefix list), 10-24
PGM (program), 10-25
PREFIX, 10-26

PROGRAM, 10-27

M6262A

INDEX (cont'd)

PUB (public programs), 10-28
STRING, 10-29
TSK (display configured devices), 10-30
VMERGE, 10-31
Low—order ASCII character codes, D-1
Overview, 10-1
BOSS/VS specific instructions
High-order ASCII character codes, D-2
Instructions
', 11-3
ATN (radian arctangent), 11-4
ATTR=, 11-5
CLASS, 11-6
COPIES=, 11-7
COS (cosine), 11-8

DSZ (available user memory), 11-9
EDIT (line editor), 11-10
ERROR, 11-14
EXP (exponential), 11-15
EXTEND, 11-16
FID (file information), 11-17
FILE, 11-19
GETDEVINFO , 11-20
HELP, 11-23
LOG (natural logarithm), 11-24
MAX (maximum argument value), 11-25
MIN (minimum argument value), 11-26
NO EXTEND, 11-27
PFX (prefix list), 11-28
PRIORITY= , 11-29
RANDOMIZE, 11-30
RND, 11-31
SEQUENCE, 11-32
SIN (sine), 11-33
SPX (system prefix), 11-34
SQR, 11-35
SS7Z (sector size), 11-36
MAGNET, 11-1
NS subroutines, 11-1
Overview, 11-1
Business BASIC 86
Features
Control branching, 2-5
Input buffering, 2-4
Input/output devices, 2-2
I/0 directives, 2-2
Operating modes, 2-1
Console mode, 2

-1
Program mode, 2-1

M6262A I-2

INDEX (cont'd)

Operating system access, 2-2

Overview, 2-1

Public programming, 2-4

RETAIN buffering, 2-5
Business BASIC 86 (cont'd)

Quick reference, G-1
Multi-Keyed files
Benefits of using

Improved data integrity, B-4
Improved performance, B-5
Reduced complexity of applications, B-5
Reduced disk space requirements, B-5
Reduced file maintenance, B-4

Language features for
FIELD ALIAS, B-28
FMTINFO function, B-25
INITFILE, B-28
KEY function, B-25
Miscellany, B-29
SETFIELD, B-28
Syntax for
Composite fields, B-11
Creating a Multi-Keyed file, B-6
Field information, B-9
Fields that don't follow each other, B-14
Format string, B-6
Gaps in the record, B-17
Variable-length fields, B-10
Business BASIC
Feature summary, F-1
Programming environment
Field protection, A-8

Ghost tasks
Communication with a ghost task, A-2
Restrictions on ghost programs, A-1
Input buffering, A-5
Clearing the input buffer, A-5
Error processing, A-6
Escape processing, A-5
TBL= processing, A-5
Overview, A-1
Public programming
General, 2-4
On BOSS/IX systems, A-3
Restrictions on public programming, A-4

CALL directive, 4-4
CALL/ENTER directives, 4-5
Catastrophic errors, 9-2
CB variable format, 6-15

1-3 M6262A

INDEX (cont'd)

CHAR function, 5-12
Character code conversions, 5-12
CHR (numeric to ASCII) function, 5-15
CLEAR directive, 4-6
Clearing the input buffer, A-5
CLOSE directive, 2-3, 4-7
Compatibility between systems, 1-1
Compound statements, 3-2
CONSOLE LOCK directive, 4-9
Constants, 3-3
Contents description, 1-2
Control branching, 2-5
Conventions
Input terminators, 1-6
Parameter abbreviations, 1-4
Symbols, 1-3
Converting existing applications to Multi-Keyed files
Conversion approaches, B-40
Finding records by NOKEY fields, B-41
Selecting an appropriate program, B-39
Selecting keysets, B-40
Selecting NOKEY fields, B-41
Suggestions for conversion, B-41
Data layout diagrams, B-41
Definition of keysets for conversion, B-44
Field separator characters, B-42
Subfields, B-42
WriteThru file attribute on BOSS/VS, B-44
CRC (cyclic redundancy code) function, 5-16
CREATE directive, 4-11
CSW (call switch) system variable, 6-2
CTL (control variable) system variable, 6-3
Current working directory, 1-4

DAY (date) system variable, 6-4

DEC (binary to decimal) function, 5-17

DEF FNx (DEF FNx$) directive, 4-13

DELETE directive, 4-15

DEVINFO (configured devices) system variable, 6-5
DIM array directive, 4-16

DIM string directive, 4-18

DIRECT directive, 4-19

Directives
BEGIN, 4-2
CALL, 4-
CLEAR, 4-6
CLOSE, 4-7

CONSOLE LOCK, 4-9
CREATE, 4-11

DEF FNx (DEF FNx$), 4-13
DELETE, 4-15

M6262A I-4

DIM array, 4-16
DIM string, 4-18
DIRECT , 4-19
ENCRYPT, 4-20
END, 4-21
ENDTRACE, 4-22
ENDTRANS, 4-23
ENTER, 4-24

Directives (cont'd)

ERASE, 4-25
ESCAPE, 4-26
EXECUTE, 4-27
EXIT, 4-28
EXITTO, 4-29
EXTRACT, 4-30

EXTRACT RECORD, 4-31

FIELD ALIAS, 4-32
FIND, 4-33
FIND RECORD, 4-34

FLOATING POINT, 4-35

FOR/NEXT, 4-36
GOSUB, 4-38

GOTO, 4-39
IF/THEN/ELSE/ENDIF,
INDEXED, 4-42
INITFILE , 4-43
INPUT, 4-44

INPUT RECORD, 4-49
IOLIST, 4-50

LET, 4-51

LIST, 4-52

LIST PROGRAM, 4-53
LOAD, 4-54

LOCK, 4-55

MAKE PROGRAM, 4-56
MERGE, 4-57

MULTI, 4-59

NEXT, 4-63
ON/GOSUB, 4-64
ON/GOTO , 4-66
OPEN, 4-68
PACK, 4—69
PRECISION, 4-70
PRINT, 4-71
PRINT RECORD, 4-72
PSAVE , 4-73
QUIT, 4-74
READ, 4-75

INDEX (cont'd)

4-40

M6262A

READ RECORD,

RELEASE
REM , 4
REMOVE,
RENAME,
RESET,
RETRY,
RETURN,
RUN, 4-
SAVE, 4
SERIAL,
SETCTL,
SETDAY,
Directives

SETERR,
SETESC,

SETFIELD,

SETTIME

SETTRACE,
SETTRANS,
-101

SORT, 4
START,
STOP, 4
SYNTAX,
SYSTEM
TABLE,
UNLOCK,
UNPACK,
WAIT, 4
WRITE,

WRITE RECORD,

Directory,
Diskno, 1-5
DOM=

ENCRYPT directive,
END directive,
(branch at end of file)

END=
ENDTRACE di
ENDTRANS di

4-79
, 4-80

-81

4-82
4-83

4-84
4-85

4-86
87

-88

4-89

4-90

4-91
(cont'd)

4-92
4-93
4-94
, 4-95
4-96
4-97

4-102

-103

4-104
, 4-105
4-106

4-110

4-111

-112

4-113
4-114
1-5

(duplicate or missing key)

4-20
4-21

rective, 4-22
rective, 4-23

ENTER directive,
EPT (exponent)
ERASE directive,
ERR (error)
ERR= (error exit)
Errors
Catastrophic,
Codes, 9-2

function,

4-24
5-18

4-25

system variable,

I/0 option,

9-2

Non-catastrophic errors,

Processing,

M6262A

9-1,

A-6

INDEX (cont'd)

I/0 option, 7-2

I/0 option, 7-3

6-8
7-4

9-1

INDEX (cont'd)

ESCAPE directive, 4-26
Escape processing, A-5
EXECUTE directive, 4-27
EXIT directive, 4-28
EXITTO directive, 4-29
Expressions

Arithmetic, 3-5

Logical, 3-7

String, 3-7

EXTRACT directive, 2-3, 4-30
EXTRACT RECORD directive, 4-31

FID format, 10-17, 11-18
FIELD ALIAS directive, 4-32
Field protection, A-8
Field variables, 3-4
File growth allocation (add alloc), 1-4
File-ID/dev-ID, 1-5
Fileno, 1-5
FIND directive, 2-3, 4-33
FIND RECORD directive, 4-34
FLOATING POINT directive, 4-35
Floating point numbers, 3-3
FMTINFO (format information) function, 5-19
FNx (define function) function, 5-21
Format (See Statement format)
FOR/NEXT directive, 4-36
FPT (fractional part) function, 5-22
Functions
ABS (absolute value), 5-2

AND (combine strings), 5-3

ASC (string to decimal), 5-4
ASCII, 5-5

ATH (ASCII to hexadecimal), 5-6
ATTR, 5-7

BIN (binary), 5-11

CHAR, 5-12

CHR (numeric to ASCII), 5-15

CRC (cyclic redundancy code), 5-16
DEC (binary to decimal), 5-17

EPT (exponent), 5-18

FMTINFO (format information), 5-19
FNx (define function), 5-21

FPT (fractional part), 5-22

GAP (generate odd parity), 5-23
HSH (hash), 5-24

HTA (hexadecimal to ASCII), 5-25
IND (index), 5-26

INT (integer), 5-27

IOR (inclusive OR), 5-28

KEY, 5-29

M6262A

INDEX (cont'd)

LEN (length), 5-30

LRC (longitudinal redundancy check), 5-31

MOD (modulo), 5-32
(
(

NOT (inverse string), 5-33
NUM (numeric value), 5-34
EOS (position), 5-35

SGN (sign), 5-36

STR (string), 5-37

(
(
(
TBL (table), 5-38
TRANS, 5-39
XOR (exclusive OR), 5-40
GAP (generate odd parity) function, 5-23
Ghost tasks
Coitinunication with a ghost task, A-2
Restrictions on ghost programs, A-1
GOSUB directive, 4-38
GOTO directive, 4-39

HSH (hash) function, 5-24
HTA (hexadecimal to ASCII) function, 5-25

IND (index) function, 5-26
IND= (record index) I/O option, 7-5
Init-alloc, 1-5
IF/THEN/ELSE/ENDIF directive, 4-40
INDEXED directive, 4-42
INITFILE directive, 4-43
Input buffering, A-5
Clearing the input buffer, A-5
Error processing, A-6
Escape processing, A-5
General, 2-4
TBL= processing, A-5
INPUT directive, 2-3, 4-44
INPUT RECORD directive, 4-49
Input terminators, 1-6
Input/output devices, 2-2
I/0 directives
CLOSE, 2-3, 4-7
EXTRACT, 2-3, 4-30
FIND, 2-3, 4-33
INPUT, 2-3, 4-44
LIST, 2-3, 4-52
LOCK, 2-3, 4-55
MERGE, 2-3, 4-57
OPEN, 2-3, 4-68
OPEN INPUT, 2-3, 4-68
PACK, 2-3, 4-69
PRINT, 2-3, 4-71
READ, 2-3, 4-75

M6262A I-8

INDEX (cont'd)

REMOVE, 2-3, 4-82
RETAIN, 2-3, 2-5, B-2, B-20
UNLOCK, 2-3, 4-110

UNPACK, 2-3, 4-111
WRITE, 2-3, 4-113
Applicable files/devices, 2-3
Input/output options
DOM= (duplicate or missing key), 7-2
END= (branch at end of file), 7-3
ERR= (error exit), 7-4
IND= (record index), 7-5
IOL= (IOLIST statement), 7-6
KEY= (access key in file), 7-
LEN= (length of variable), 7-
RETAIN (RETAIN buffer), 7-10
SEQ= (sequential file number), 7-11
SIZ= (input size), 7-12
TBL= (translation table), 7-13
TIM= (set time out), 7-14
INT (integer) function, 5-27
Int-expr, 1-5
IOL= (IOLIST statement) I/O option, 7-6
IOLIST directive, 4-50
IOR (inclusive OR) function, 5-28
IS0-646 standard characters, B-7

-
9

KEY function, 5-29

KEY= (access key in file) I/O option, 7-7
Keysz, 1-5

Keyword list, E-1

Language format
Overview, 3-1
Output data formatting, 3-8
Non-formatted printing of numeric values, 3-12
Numeric editing, 3-10
Positioning data display, 3-9
Statement format, 3-1
Compound statements, 3-2
Directives, 3-2
Parameters, 3-2
Statement numbers, 3-1
Variables, constants and expressions, 3-3
Expressions
Arithmetic, 3-5
Logical, 3-7
String, 3-7
Field variables, 3-4
Numbers, 3-3
Simple numeric variables, 3-4
String

I-9 M6262A

INDEX (cont'd)

Comparison, 3-7
Constants, 3-
Variables, 3-
Subscripted
Numeric variables (DIM),
String variables (DIM),
Variable names, 3-4
LEN (length) funct on, 5-30
LEN= (length of variable) I/O option, 7-9
LET directive, 4-51
LIST directive, 2-3, 4-52
LIST PROGRAM directive, 4-53
LOAD directive, 4-54
Loading data into a Multi-Keyed file, B-39
LOCK directive, 2-3, 4-55
Log-expr, 1-5
Logical expressions, 3-7
LRC (longitudinal redundancy check) function, 5-31

6
6

3-4
3-6

MAGNET, 11-1
MAKE PROGRAM directive, 4-56
MERGE directive, 2-3, 4-57
Mnemonics

Alphabetical listing, 8-3

Descriptions
@(x) (horizontal position), 8-5, 8-10
@(x,y) (horizontal and vertical position),

'10" (10 pitch), 8-10

'16' (16 pitch), 8-11

'oL’' six lines per inch), 8-10

'8L' (eight lines per inch), 8-10

'B1' sheet feeder bin 1), 8-11

'B2'" (sheet feeder bin 2), 8-11

'BB' (begin blink), 8-5

'BE' (begin echo), 8-15

'BG' (begin generating ERROR 29), 8-16
'BI' (begin input transparency), 8-15
'BO' (begin output transparency), 8-16

(
(
(
(
(
(
(
(
(
(
(
'BR' (begin reverse video), 8-5
(
(
(
(
(
(
(
(
(
(
(

'BS' (backspace), 8-5

'BT' (begin input buffering), 8-16
'BU' (begin underline), 8-5, 8-11
*CE' (clear screen to end of page), 8-5
'CE' clear foreground), 8-5

'CH' cursor home), 8-6

'CI' clear input buffer), 8-16
'CL' clear line), 8-6

'CR' (carriage return), 8-6, 8-11
'CS' (clear screen), 8-6

'DC' (delete character), 8-6

M6262A I-10

8-5

INDEX (oont'd)

'DN' (down cursor), 8-6

'DACS' (disable alternate character set), 8-11

1DBLH ' (double height print), 8-11

'DBLW' (double width print), 8-12

'DPM' (reset to default character printing mode), 8-11
'EB' (end blink), 8-6

'EE' (end echo), 8-16

'EG ' (end generating ERROR 29), 8-17
'EI' (end input transparency), 8-3
'EL'" (end load), 8-12

'BO' (end output transparency), 8-17
'EP' (expanded print), 8-12

'EPM' (even dot plot mode), 8-12
'ER' (end reverse video), 8-6
?ES' (escape), 8-17

'ET' (end input buffering), 8-17
'EU' (end underline), 8-7, 8-12
'FF' (form feed), 8-12

'IC (insert character), 8-7

'KL' (keyboard lock), 8-7

'KU' (keyboard unlock), 8-7

'LD' (line delete), 8-7

'LF' (line feed), 8-7, 8-12

'LI'" (line insert), 8-7

'LT' (cursor left), 8-7

'NL' (new line), 8-12

'OP' (overprint), 8-13

'OUT (n) ' (output (n) characters without translation), 8-13
Descriptions (cont'd)

'PE' (end protect), 8-8

'PG ' (print screen), 8-8

'PM ' (plot mode), 8-13

'PS' (start protect mode), 8-8

'RB' (ring bell), 8-8, 8-13

'RC' (read cursor), 8-8

'RT' (cursor right), 8-9

'S2'" (slew 2), 8-13

'S3'" (slew 3), 8-13

'S4' (slew 4), 8-13

'S5' (slew 5), 8-13

'S6' (slew 6), 8-13

'S7' (slew 7), 8-13

'S8' (slew 8), 8-13

'SACS' (start alternate character set), 8-13
'SB' (start background), 8-9, 8-14

'"SET6' (six LPI), 8-14

'SET8' (eight LPI), 8-14

'SE' (start foreground), 8-9, 8-14

'SL' (start load), 8-14

'SN' (screen narrow), 8-9

I-11 M6262A

INDEX (cont'd)
'SP' (superscript), 8-14
'SPML' (set print node 1), 8-15

'SPM2' (set print mode 2), 8-15
'SPM3' (set print mode 3), 8-15
()

()

'SPM4' (set print mode 4), 8-15
'SPM5' (set print mode 5), 8-15
'SS! subscript), 8-15

'SW' screen wide), 8-9

'TL' transmit line), 8-9

(
(
(
'TP" (transmit line protected), 8-9
(
(
(

'TR' transmit screen), 8-9
'TS! transmit screen protected), 8-10
'Up'! cursor up), 8-10

'VT' (vertical tab), 8-15
'WPM' (letter quality emulation mode), 8-15
Format, 8-1
0S control, 8-15
Printer control, 8-10
Terminal control, 8-5
VFU definition, 8-2
MOD (modulo) function, 5-32
MULTI directive, 4-59
Multi-Keyed files
Applications for Multi-Keyed files
Existing applications
Enhancement of, B-4
Sets of files, B-3
Sort utility, B-3
Rewriting old applications, B-4
Writing new applications, B-4

Benefits of using Multi-Keyed files, B-4
Improved data integrity, B-4
Improved performance, B-5
Reduced complexity of applications, B-5
Reduced disk space requirements, B-5
Reduced file maintenance, B-4

BB86 syntax for Multi-Keyed files, B-6
Composite fields, B-11
Creating a Multi-Keyed file, B-6
Field information, B-9
Fields that don't follow each other, B-14
Format string, B-6
Gaps in the record, B-17
Variable-length fields, B-10

Converting existing applications
Conversion approaches, B-40
Finding records by NOKEY fields, B-41
Select an appropriate program , B-39
Selecting NOKEY fields, B-41
Selection of keysets, B-40

M6262A I-12

INDEX (cont'd)

Suggestions for conversion, B-41
Data layout diagrams, B-41
Definition of keysets for conversion, B-44
Field separator characters, B-42
Subfields, B-42
WriteThru file attribute on BOSS/VS, B44
File creation examples, B-30
Introduction, B-1
New language features
FIELD ALIAS, B-28
FMTINFO function, B-25
INITFILE, B-28
KEY function, B-25
Miscellany, B-29
SETFIELD , B-28
Reading records from a Multi-Keyed file
Examples, B-17
Expanded KEY= capabilities, B-18
Reading using FIELD ALIAS, B-19
RETAIN and UNPACK, B-20
Other variations on the READ statement, B-21
Recovering Multi-Keyed files on BOSS/IX, B47
Disk space requirements, B-47
Single user mode, B-48
Template file, B47
User interface, B48
Recovery of Multi-Keyed files on BOSS/VS, B-44
Concurrency and integrity, B-44
File recovery sequence, B-45
Tools available, B-45
Removing records from a Multi-Keyed file, B-24
Repairing a Multi-Keyed file, B-49
Sample programs
General, B-32
Loading data into a Multi-Keyed file, B-39
Printing a Multi-Keyed file, B-36
Updating a Multi-Keyed file, B-38
Writing records to a Multi-Keyed file, B-21

NEXT directive, 4-63

Non-catastrophic errors, 9-1

Non-Formatted printing of numeric values, 3-12
NOT (inverse string) function, 5-33

NS subroutines, 11-1

NUM (numeric value) function, 5-34

Num-expr, 1-5

Numbers, 3-3

Numeric editing, 3-10

Numeric variables, 3-4

M6262A

INDEX (cont'd)

ON/GOSUB directive, 4-64
ON/GOTO directive, 4-66
OPEN directive, 2-3, 4-68
OPEN INPUT directive, 2-3, 4-68
Operating modes, 2-1

Console mode, 2-1

Program mode, 2-1
Operating system access, 2-2
Output data formatting, 3-8
Overview, 2-1

PACK directive, 2-3, 4-69
Parameter abbreviations, 1-4
Parameters, 3-2
PNM (program name) system variable, 6-9
POS (position) function, 5-35
Positioning data display, 3-9
PRC (precision) system variable, 6-10
PRECISION directive, 4-70
Prefix—-1list, 1-5
PRINT directive, 2-3, 4-71
PRINT RECORD directive, 4-72
Printing a Multi-Keyed file, B-36
Prog-ID, 1-5
PSAVE directive, 4-73
PSZ (program size) system variable, 6-11
PUB(O) format, 10-28
Public programming
General, 2-4
On BOSS/IX systems, A-3
Restrictions on public programming, A-4

QUIT directive, 4-74

READ directive, 2-3, 4-75
READ RECORD directive, 4-79
Reading records from a Multi-Keyed file, B-17
Examples, B-17
Expanded KEY= capabilities, B-18
Other variations on the READ statement, B-21
Reading using FIELD ALIAS, B-19
RETAIN and UNPACK, B-20
Recno, 1-5
Recovery of Multi-Keyed files
On BOSS/VS
Concurrency and integrity, B-44
Tools available, B-45
File recovery sequence, B-45
On BOSS/IX
Template file, B47
Disk space requirements, B-47

M6262A I-14

INDEX (cont'd)

User interface, B48
Single user node, B-48
Recsz, 1-6
RELEASE directive, 4-80
REM directive, 4-81
REMOVE directive, 2-3, 4-82
RENAME directive, 4-83
Repairing a Multi-Keyed file, B-49
Removing records from a Multi-Keyed file, B-24
RESET directive, 4-84
Restricted use directives, 2-1
RETAIN (RETAIN buffer) I/0 option, 7-10

RETAIN option, 2-3, 2-5, B-2, B-20
RETRY directive, 4-85

RETURN directive, 4-86

RUN directive, 4-87

SAVE directive, 4-88

SEQ= (sequential file number) I/O option, 7-11
SMC ID Codes, 6-5

SERIAL directive, 4-89

SETCTL directive, 4-90

SETDAY directive, 4-91

SETERR directive, 4-92

SETESC directive, 4-93

SETFIELD directive, 4-94

SETTIME directive, 4-95

SETTRACE directive, 4-96

SETTRANS directive, 4-97

SGN (Sign) function, 5-36

SIZ= (input size) I/O option, 7-12

SORT directive, 4-101

SSN (system serial number) system variable, 6-12

START directive, 4-102
Statement format, 3-1
Statement numbers, 3-1
STOP directive, 4-103
Stno, 1-6
STR (string) function, 5-37
Str-expr, 1-6
String
Comparison, 3-7
Constants, 3-6
Expressions, 3-7
Variables, 3-6
Subscripted
Numeric variables (DIM),
String variables (DIM),
Symbols, 1-3
SYNTAX directive, 4-104
SYS (operating system level) system variable, 6-13

I-15 M6262A

INDEX (cont'd)

SYSTEM directive, 4-105
System variables
CSW (call switch), 6-2
CTL (control variable), 6-3
DAY (date), 6-4
DEVINFO (configured devices), 6-5
ERR (error), 6-8
PNM (program name), 6-9
PRC (precision), 6-10
PSZ (program size), 6-11
SSN (system serial number), 6-12
SYS (operating system level), 6-13
TCB (task control block), 6-14
TIM (time of day), 6-17
TRX (translation file name), 6-18
UNT (lowest available unit), 6-19
WHO (account name), 6-20

TABLE directive, 4-106

Table statement table, 4-108

TBL (table) function, 5-38

TBL= (translation table) I/O option, 7-13
TBL--processing, A-5

TCB (task control block) system variable, 6-14
Terminator key control values, 6-3

TIM (time of day) system variable, 6-17

TIM= (set time out) I/O option, 7-14

TRANS function, 5-39

TRX (translation file name) system variable, 6-18

UNLOCK directive, 2-3, 4-110

UNPACK directive, 2-3, 4-111

UNT (lowest available unit) system variable, 6-19
Updating a Multi-Keyed file, B-38

Var-list, 1-6
Variable tables for BOSS/IX, C-1
Variables
Field, 3-4
Names for, 3-4
Numeric
Simple, 3-4
Subscripted, 3-4
String
Comparison, 3-7
Constants, 3-6
Expressions, 3-7

Subscripted
Numeric (DIM), 3-4
String (DIM), 3-6
System, 6-1

M6262A I-16

INDEX (cont'd)

WAIT directive, 4-112

WHO (account name) system variable, 6-20
WRITE directive, 2-3, 4-113

WRITE RECORD directive, 4-114

Writing records to a Multi-Keyed file, B-21
XOR (exclusive OR) function, 5-40

M6262A

M6262A

NOTES

	SECTION 1 - INTRODUCTION
	SECTION 2 - FEATURES OF BUSINESS BASIC 86
	SECTION 3 – LANGUAGE FORMAT
	SECTION 4 - DIRECTIVES
	SECTION 5 - FUNCTIONS
	SECTION 6 - SYSTEM VARIABLES
	SECTION 7 – INPUT/OUTPUT OPTIONS
	SECTION 8 - MNEMONICS
	SECTION 9 - ERROR PROCESSING
	SECTION 10 - BOSS/IX SPECIFIC INSTRUCTIONS
	SECTION 11 - BOSS/VS SPECIFIC INSTRUCTIONS
	APPENDIX B - MULTI-KEYED FILES
	APPENDIX D - ASCII CHARACTER CHARTS
	APPENDIX E - KEYWORD LIST
	APPENDIX F - BUSINESS BASIC FEATURE SUMMARY
	APPENDIX G - BUSINESS BASIC 86 QUICK REFERENCE
	INDEX

